-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
156 lines (132 loc) · 7.95 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
import streamlit as st
import numpy as np
import pandas as pd
from tqdm import tqdm
import copy
from datetime import date, timedelta, datetime
from Data import add_location_to_data_instance, JsonDataStore
from GeoLocationFinder import find_latlong
from moswing_inference.model_utils import model_predict, load_class_label, load_thres, load_model, load_model_setting, DURATION_EACH_DATAPOINT
from moswing_inference.sound_utils import DEFAULT_SR, load_sound, preprocess_file
from moswing_inference.plot_utils import plotly_overlap_prediction, binary_y
DB_PATH = "data.json"
MODEL_SETTING_DIR = "moswing_inference/model_graveyard"
today = date.today()
today_timestamp = datetime.today().timestamp()
db = JsonDataStore(DB_PATH)
def adding_location_callback(file_name, file_id):
file_name = copy.deepcopy(file_name)
file_id = copy.deepcopy(file_id)
def internal_fn():
location_text = st.session_state.get(f"location_{file_id}", "")
date_of_recording = st.session_state.get(f"date_{file_id}", "")
print("retrived location:", location_text, "retrived date:", date_of_recording)
if location_text != "" and date_of_recording != "":
loc = find_latlong(location_text)
if loc is not None:
location_list.append(loc)
loc["location_text"] = location_text
add_location_to_data_instance(db, file_name, loc, date_of_recording)
st.success(f"The location is saved {file_name}", icon="✅")
else:
print("cant find the location", location_text)
st.warning(f"cant find the latlong of location {location_text}", icon="⚠️")
else:
print("some problem occurs here", location_text, date_of_recording)
st.warning(f"some problem occurs here{location_text} {date_of_recording}", icon="⚠️")
return internal_fn
def select_model_callback():
selected_model = st.session_state.get("selected_model", None)
if selected_model is None:
exit(1)
st.session_state.model_setting_path = os.path.join(MODEL_SETTING_DIR, selected_model)
def file_uploader_callback():
try:
ms = load_model_setting(st.session_state.model_setting_path)
except Exception as e:
print(e)
st.write("The selected model setting cannot be load properly.")
exit(1)
model = load_model(ms)
thres = load_thres(ms)
class_labels = load_class_label(ms)
labels = list(class_labels.keys())
labels = sorted(labels, key=lambda val: class_labels[val])
existing_file_id = [file_id for (_, file_id, _, _, _) in st.session_state.plot_list]
file_list = st.session_state.get("file_uploader")
if file_list:
filtered_file = [f for f in file_list if str(f.name).lower().endswith(".wav") and str(f.file_id) not in existing_file_id]
fild_ids = [str(f.file_id) for f in filtered_file]
file_names = (str(f.name) for f in filtered_file)
sounds = (load_sound(f, DEFAULT_SR) for f in filtered_file)
sounds = (preprocess_file(s) for s in sounds)
predictions = (model_predict(model, s) for s in sounds)
for file_name, file_id, pred in tqdm(zip(file_names, fild_ids, predictions), total=len(filtered_file)):
# matplotlib version, this is not interactive plot
# plt.figure(figsize=(18, 6))
# plot_overlap_prediction(y_pred=pred, fig_title=file_name, duration_each_datapoint=DURATION_EACH_DATAPOINT,
# thresholds=thres, class_labels=class_labels)
# st.pyplot(plt.gcf())
fig = plotly_overlap_prediction(y_pred=pred, fig_title=file_name, duration_each_datapoint=DURATION_EACH_DATAPOINT,
thresholds=thres, class_labels=class_labels)
pred = pred.reshape(-1, len(class_labels))
df = pd.DataFrame(pred, columns=labels)
df["time(s)"] = DURATION_EACH_DATAPOINT*np.arange(pred.shape[0])
pred_csv = df.to_csv()
pred = binary_y(pred, thres)
df = pd.DataFrame(pred, columns=labels)
df["time(s)"] = DURATION_EACH_DATAPOINT*np.arange(pred.shape[0])
thresholded_pred_csv = df.to_csv()
st.session_state.plot_list.append((file_name, file_id, fig, pred_csv, thresholded_pred_csv))
columns_to_be_shown = ["file_name", "location_text", "lat", "lon", "date"]
location_list:list[dict] = [v["location"] | {"timestamp": v["timestamp"], "file_name": k} for k, v in db.obj.items()]
is_location_empty = len(location_list) == 0
if not is_location_empty:
location_df = pd.DataFrame(location_list, columns=["location_text", "lat", "lon", "timestamp"])
location_df["date"] = location_df["timestamp"].apply(date.fromtimestamp)
st.set_page_config(layout="wide", page_title="MosWing: Inference")
if "plot_list" not in st.session_state:
st.session_state.plot_list = [] # list[tuple[str, str, go.Figure, str, str]]
if "filtered_location_df" not in st.session_state:
st.session_state.filtered_location_df = pd.DataFrame([], columns=columns_to_be_shown)
with st.container(border=True):
st.title("Inference")
st.selectbox("Select a SED model", os.listdir(MODEL_SETTING_DIR), key="selected_model")
if "model_setting_path" not in st.session_state:
st.session_state.model_setting_path = os.path.join(MODEL_SETTING_DIR, st.session_state.selected_model)
st.file_uploader(
"Upload sound file (.wav only)", accept_multiple_files=True,
on_change=file_uploader_callback, key="file_uploader"
)
for file_name, file_id, fig, pred_csv, thresholded_pred_csv in st.session_state.plot_list:
with st.container(border=True):
st.title(f"{file_name}'s prediction")
st.plotly_chart(fig)
_, col1, col2 = st.columns((6, 3, 3), gap="large", vertical_alignment="bottom")
with col1:
st.download_button("Download raw prediction", data=pred_csv, file_name=f"{file_name}-{st.session_state.get('selected_model', '')}-rawpred.csv", mime="text/csv", key=f"{file_id}-{st.session_state.get('selected_model', '')}-rawpred.csv", use_container_width=True)
with col2:
st.download_button("Download thresholded prediction", data=thresholded_pred_csv, file_name=f"{file_name}-{st.session_state.get('selected_model', '')}-csv", mime="text/csv", key=f"{file_id}--{st.session_state.get('selected_model', '')}-csv", use_container_width=True)
col1, col2, col3 = st.columns((6, 3, 3), gap="large", vertical_alignment="bottom")
with col1:
location_text = db.obj.get(file_name, {}).get("location", {}).get("location_text", "")
st.text_input(f"Location of {file_name}", key=f"location_{file_id}", value=location_text)
with col2:
date_stored = db.obj.get(file_name, {}).get("timestamp", None)
date_value = date.fromtimestamp(date_stored) if date_stored is not None else None
st.date_input(f"Date of recording {file_name}", key=f"date_{file_id}", value=date_value)
with col3:
st.button("Save location and date", key=f"{file_id}.addlocation", on_click=adding_location_callback(file_name, file_id), use_container_width=True)
with st.container(border=True):
st.title(f"The location of mosquito records in a interval")
st.write("The red dot indicates previous record of mosquito")
st.date_input("Select date interval", value=(today - timedelta(days=30), today),
format="YYYY/MM/DD", key="dates_on_map",
)
if len(st.session_state.dates_on_map) == 2:
start_date, end_date = st.session_state.dates_on_map
if not is_location_empty:
st.session_state.filtered_location_df = location_df[location_df["date"].apply(lambda x: x >= start_date and x <= end_date)]
st.map(st.session_state.filtered_location_df)
st.dataframe(st.session_state.filtered_location_df[columns_to_be_shown], use_container_width=True)