-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathuser_chat.py
48 lines (35 loc) · 1.21 KB
/
user_chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import random
import json
import torch
from model import NeuralNet
from nltk_fn import bag_of_words, tokenize
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
with open('dataset.json','r',) as f:
dataset = json.load(f)
file = 'data.pth'
data = torch.load(file)
input_size = data['input_size']
hidden_size = data['hidden_size']
output_size = data['output_size']
all_words = data['all_words']
tags = data['tags']
model_state = data['model_state']
model = NeuralNet(input_size, hidden_size, output_size).to(device)
model.load_state_dict(model_state)
model.eval()
bot_name = 'Launch bot'
def get_response(msg):
sentence = tokenize(msg)
x = bag_of_words(sentence, all_words)
x = x.reshape(1, x.shape[0])
x = torch.from_numpy(x)
output = model(x)
_, predicted = torch.max(output, dim = 1)
tag = tags[predicted.item()]
probs = torch.softmax(output, dim =1)
prob = probs[0][predicted.item()]
if prob.item() > 0.75:
for data in dataset['dataset']:
if tag == data['tag']:
return random.choice(data['responses'])
return 'sorry, I do not understand..... Please enter a valid question'