-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathevaluate_ucf101.py
209 lines (166 loc) · 7.99 KB
/
evaluate_ucf101.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import sys
import os
import glob
import utils
import torch
import random
import time
import argparse
import datetime
import numpy as np
import os.path as osp
import warnings
warnings.filterwarnings("ignore")
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from models.capsules_ucf101 import CapsNet
def iou(split, debug=False):
"""
Calculates the accuracy, f-mAP, and v-mAP over the test set
"""
from datasets.ucf_dataloader_eval import UCF101DataLoader
pkl_file_label = "testing_annots.pkl"
parser = argparse.ArgumentParser(description='evaluation')
parser.add_argument('--ckpt', type=str, help='experiment name')
parser.add_argument('--seed', type=int, default=47, help='seed for initializing training.')
args = parser.parse_args()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
model = CapsNet().cuda()
n_classes = 24
clip_batch_size = 14
model_names = list()
fmap_best = list()
vmap_best = list()
filtered_files = [file.split("/")[-1] for file in glob.glob(osp.join(args.ckpt, 'best_model_' + split + '*.pth'))]
for saved_wts in sorted(glob.glob(osp.join(args.ckpt, 'best_model_' + split + '*.pth'))):
model.load_previous_weights(saved_wts)
model_names.append(saved_wts)
model.eval()
model.training = False
with torch.no_grad():
validationset = UCF101DataLoader('validation',[224, 224], 1, file_id=pkl_file_label , use_random_start_frame=False)
val_data_loader = DataLoader(
dataset=validationset,
batch_size=1,
num_workers=8,
shuffle=False
)
n_correct, n_vids, n_tot_frames = 0, np.zeros((n_classes, 1)), np.zeros((n_classes, 1))
# 20 IoUs List
frame_ious = np.zeros((n_classes, 20))
video_ious = np.zeros((n_classes, 20))
iou_threshs = np.arange(0, 20, dtype=np.float32)/20
for idx, sample in enumerate(val_data_loader):
video, bbox, label = sample
video = video[0]
bbox = bbox[0]
label = label[0]
f_skip = 2
clips = []
n_frames = video.shape[0]
# print(n_frames)
for i in range(0, video.shape[0], 8*f_skip):
for j in range(f_skip):
b_vid, b_bbox = [], []
for k in range(8):
ind = i + j + k*f_skip
# print(ind)
if ind >= n_frames:
b_vid.append(np.zeros((1, 224, 224, 3), dtype=np.float32))
b_bbox.append(np.zeros((1, 224, 224, 1), dtype=np.float32))
else:
b_vid.append(video[ind:ind+1, :, :, :])
b_bbox.append(bbox[ind:ind+1, :, :, :])
clips.append((np.concatenate(b_vid, axis=0), np.concatenate(b_bbox, axis=0), label))
if np.sum(clips[-1][1]) == 0:
clips.pop(-1)
if len(clips) == 0:
print('Video has no bounding boxes')
continue
batches, gt_segmentations = [], []
# print(len(clip_batch_size))
for i in range(0, len(clips), clip_batch_size):
x_batch, bb_batch, y_batch = [], [], []
for j in range(i, min(i+clip_batch_size, len(clips))):
x, bb, y = clips[j]
x_batch.append(x)
bb_batch.append(bb)
y_batch.append(y)
batches.append((x_batch, bb_batch, y_batch))
gt_segmentations.append(np.stack(bb_batch))
gt_segmentations = np.concatenate(gt_segmentations, axis=0)
gt_segmentations = gt_segmentations.reshape((-1, 224, 224, 1)) # Shape N_FRAMES, 112, 112, 1
segmentations, predictions = [], []
frames = []
for x_batch, bb_batch, y_batch in batches:
data = np.transpose(np.array(x_batch), [0, 4, 1, 2, 3])
data = torch.from_numpy(data).type(torch.cuda.FloatTensor)
empty_action = np.ones((len(x_batch),1),np.int)*500
empty_action = torch.from_numpy(empty_action).cuda()
# print(empty_action)
segmentation, pred, _ = model(data, empty_action, empty_action, 0, 0)
segmentation = torch.sigmoid(segmentation)
segmentation_np = segmentation.cpu().data.numpy() # B x C x F x H x W -> B x 1 x 8 x 224 x 224
segmentation_np = np.transpose(segmentation_np, [0, 2, 3, 4, 1])
save_clip = data.cpu().data.numpy()
save_clip = np.transpose(save_clip, [0, 2, 3, 4, 1])
# print(segmentation_np.shape, data.shape, save_clip.shape)
frames.append(save_clip)
segmentations.append(segmentation_np)
predictions.append(pred.cpu().data.numpy())
# print(f'preds length: {len(predictions)}')
predictions = np.concatenate(predictions, axis=0)
#predictions = predictions.reshape((-1, n_classes))
assert predictions.shape[1] == n_classes
fin_pred = np.mean(predictions, axis=0)
fin_pred = np.argmax(fin_pred)
if fin_pred == label:
n_correct += 1
pred_segmentations = np.concatenate(segmentations, axis=0)
pred_segmentations = pred_segmentations.reshape((-1, 224, 224, 1))
pred_segmentations = (pred_segmentations >= 0.5).astype(np.int64)
seg_plus_gt = pred_segmentations + gt_segmentations
frames_save = np.concatenate(frames, axis=0)
frames_save = frames_save.reshape((-1, 224, 224, 3))
vid_inter, vid_union = 0, 0
# calculates f_map
for i in range(gt_segmentations.shape[0]):
frame_gt = gt_segmentations[i]
if np.sum(frame_gt) == 0:
continue
n_tot_frames[label] += 1
inter = np.count_nonzero(seg_plus_gt[i] == 2)
union = np.count_nonzero(seg_plus_gt[i])
vid_inter += inter
vid_union += union
i_over_u = inter / union
for k in range(iou_threshs.shape[0]):
if i_over_u >= iou_threshs[k]:
frame_ious[label, k] += 1
n_vids[label] += 1
i_over_u = vid_inter / vid_union
for k in range(iou_threshs.shape[0]):
if i_over_u >= iou_threshs[k]:
video_ious[label, k] += 1
fAP = frame_ious/n_tot_frames
fmAP = np.mean(fAP, axis=0)
vAP = video_ious/n_vids
vmAP = np.mean(vAP, axis=0)
print('Accuracy:', n_correct / np.sum(n_vids) , 'IoU/fmap/vmap', iou_threshs[4], fmAP[4], vmAP[4], iou_threshs[10], fmAP[10], vmAP[10])
fmap_best.append(fmAP[10])
vmap_best.append(vmAP[10])
best_fmap_model = model_names[fmap_best.index(max(fmap_best))]
best_vmap_model = model_names[vmap_best.index(max(vmap_best))]
best_files = list()
best_files.append(best_fmap_model)
best_files.append(best_vmap_model)
for file in filtered_files:
# print(osp.join(args.ckpt, file))
if osp.join(args.ckpt, file) not in best_files:
os.remove(osp.join(args.ckpt, file))
print(os.listdir(args.ckpt))
iou('train')