-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathconv_sd_to_onnx.py
676 lines (616 loc) · 26.7 KB
/
conv_sd_to_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
# Copyright 2022 Dirk Moerenhout. All rights reserved.
#
# This program is free software: you can redistribute it and/or modify it under the terms
# of the GNU General Public License as published by the Free Software Foundation,
# either version 3 of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
# without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along with this program. If not,
# see <https://www.gnu.org/licenses/>.
#
# *****
# NOTE this was originally derived from:
# https://github.com/huggingface/diffusers/blob/main/scripts/convert_stable_diffusion_checkpoint_to_onnx.py
#
# Original file released under Apache License, Version 2.0
# *****
#
# Version history
# v1.2 First fully working version converting unet to fp16
# v2.0 Refactored + enabled conversion to fp16 for Text Encoder
# v2.1 Support for safetensors
# v2.2 Reduce visible warnings
# v3.0 You can now provide an alternative VAE
# v3.1 Align with diffusers 0.12.0
# v4.0 Support ckpt conversion (--> renamed to conv_sd_to_onnx.py)
# v5.0 Use ONNX Runtime Transformers for model optimisation
# v6.0 Support ControlNet
# v6.1 Support for diffusers 0.15.0
# v7.0 Support for diffusers 0.16.0 and torch 2.1
# v8.0 Support for ONNX Runtime 1.15
# v8.1 Tuning improvements
# v8.2 Tuning improvements + fix for loading tuned UNET
# v8.3 Tuning improvements
# v8.4 Moving back to traditional Attention Processor so it can be tuned into MultiHeadAttention
# v9.0 More tuning including VAE and Controlnet. Controlnet is always max sliced to reduce VRAM stress
import warnings
import argparse
import os
import shutil
from pathlib import Path
import json
import tempfile
from typing import Union, Optional, Tuple
import torch
from torch.onnx import export
import safetensors
import onnx
from diffusers.models import AutoencoderKL
from diffusers import (
OnnxRuntimeModel,
OnnxStableDiffusionPipeline,
StableDiffusionPipeline,
ControlNetModel,
UNet2DConditionModel
)
from diffusers.models.attention_processor import AttnProcessor
from diffusers.models.unet_2d_condition import UNet2DConditionOutput
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
# To improve future development and testing, warnings should be limited to what is somewhat useful
# Truncation warnings are expected as part of FP16 conversion and should not be shown
warnings.filterwarnings('ignore','.*will be truncated.*')
# We are ignoring prim::Constant type related warnings
warnings.filterwarnings('ignore','.*The shape inference of prim::Constant type is missing.*')
# ONNX Runtime Transformers offers ONNX model optimisation
from onnxruntime.transformers.float16 import convert_float_to_float16
from onnxruntime.transformers.fusion_options import FusionOptions
from onnxruntime.transformers.optimizer import optimize_model
# We need a wrapper for UNet2DConditionModel as we need to pass tuples
# We can't properly export tuples of Tensors with ONNX
class UNet2DConditionModel_Cnet(UNet2DConditionModel):
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
down_block_add_res00: Optional[torch.Tensor] = None,
down_block_add_res01: Optional[torch.Tensor] = None,
down_block_add_res02: Optional[torch.Tensor] = None,
down_block_add_res03: Optional[torch.Tensor] = None,
down_block_add_res04: Optional[torch.Tensor] = None,
down_block_add_res05: Optional[torch.Tensor] = None,
down_block_add_res06: Optional[torch.Tensor] = None,
down_block_add_res07: Optional[torch.Tensor] = None,
down_block_add_res08: Optional[torch.Tensor] = None,
down_block_add_res09: Optional[torch.Tensor] = None,
down_block_add_res10: Optional[torch.Tensor] = None,
down_block_add_res11: Optional[torch.Tensor] = None,
mid_block_additional_residual: Optional[torch.Tensor] = None,
return_dict: bool = False,
) -> Union[UNet2DConditionOutput, Tuple]:
down_block_add_res = (
down_block_add_res00, down_block_add_res01, down_block_add_res02,
down_block_add_res03, down_block_add_res04, down_block_add_res05,
down_block_add_res06, down_block_add_res07, down_block_add_res08,
down_block_add_res09, down_block_add_res10, down_block_add_res11)
return super().forward(
sample = sample,
timestep = timestep,
encoder_hidden_states = encoder_hidden_states,
down_block_additional_residuals = down_block_add_res,
mid_block_additional_residual = mid_block_additional_residual,
return_dict = return_dict
)
def onnx_export(
model,
model_args: tuple,
output_path: Path,
ordered_input_names,
output_names,
dynamic_axes,
opset,
):
'''export a PyTorch model as an ONNX model'''
output_path.parent.mkdir(parents=True, exist_ok=True)
export(
model,
model_args,
f=output_path.as_posix(),
input_names=ordered_input_names,
output_names=output_names,
dynamic_axes=dynamic_axes,
do_constant_folding=True,
opset_version=opset,
)
@torch.no_grad()
def tune_model(
model_path: str,
model_type: str,
fp16: bool
):
model_dir=os.path.dirname(model_path)
# First we set our optimisation to the ORT Optimizer defaults for the provided type
optimization_options = FusionOptions(model_type)
# The ORT optimizer is designed for ORT GPU and CUDA
# To make things work with ORT DirectML, we disable some options
# The GroupNorm op has a very negative effect on VRAM and CPU use
optimization_options.enable_group_norm = False
# On by default in ORT optimizer, turned off as it causes performance issues
optimization_options.enable_nhwc_conv = False
# On by default in ORT optimizer, turned off because it has no effect
optimization_options.enable_qordered_matmul = False
optimizer = optimize_model(
input = model_path,
model_type = model_type,
opt_level = 0,
optimization_options = optimization_options,
use_gpu = False,
only_onnxruntime = False
)
if fp16:
optimizer.convert_float_to_float16(
keep_io_types=True, disable_shape_infer=True, op_block_list=['RandomNormalLike']
)
optimizer.topological_sort()
shutil.rmtree(model_dir)
os.mkdir(model_dir)
# collate external tensor files into one
onnx.save_model(
optimizer.model,
model_path,
save_as_external_data=True,
all_tensors_to_one_file=True,
location="weights.pb",
convert_attribute=False,
)
@torch.no_grad()
def convert_to_fp16(
model_path
):
'''Converts an ONNX model on disk to FP16'''
model_dir=os.path.dirname(model_path)
# Breaking down in steps due to Windows bug in convert_float_to_float16_model_path
onnx.shape_inference.infer_shapes_path(model_path)
fp16_model = onnx.load(model_path)
fp16_model = convert_float_to_float16(
fp16_model, keep_io_types=True, disable_shape_infer=True
)
# clean up existing tensor files
shutil.rmtree(model_dir)
os.mkdir(model_dir)
# save FP16 model
onnx.save(fp16_model, model_path)
@torch.no_grad()
def convert_models(pipeline: StableDiffusionPipeline,
output_path: str,
opset: int,
fp16: bool,
notune: bool,
controlnet_path: str,
attention_slicing: str):
'''Converts the individual models in a path (UNET, VAE ...) to ONNX'''
output_path = Path(output_path)
# TEXT ENCODER
num_tokens = pipeline.text_encoder.config.max_position_embeddings
text_hidden_size = pipeline.text_encoder.config.hidden_size
text_input = pipeline.tokenizer(
"A sample prompt",
padding="max_length",
max_length=pipeline.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
textenc_path=output_path / "text_encoder" / "model.onnx"
onnx_export(
pipeline.text_encoder,
# casting to torch.int32 https://github.com/huggingface/transformers/pull/18515/files
model_args=(text_input.input_ids.to(device=device, dtype=torch.int32)),
output_path=textenc_path,
ordered_input_names=["input_ids"],
output_names=["last_hidden_state", "pooler_output"],
dynamic_axes={
"input_ids": {0: "textenc_inputids_batch", 1: "textenc_inputids_sequence"},
},
opset=opset,
)
if fp16:
textenc_model_path = str(textenc_path.absolute().as_posix())
convert_to_fp16(textenc_model_path)
# UNET
unet_in_channels = pipeline.unet.config.in_channels
unet_sample_size = pipeline.unet.config.sample_size
unet_path = output_path / "unet" / "model.onnx"
if controlnet_path:
# reload UNET to get an ONNX exportable version with ControlNet support
with tempfile.TemporaryDirectory() as tmpdirname:
pl.unet.save_pretrained(tmpdirname)
controlnet_unet=UNet2DConditionModel_Cnet.from_pretrained(tmpdirname,
low_cpu_mem_usage=False)
if attention_slicing:
pl.enable_attention_slicing(attention_slicing)
controlnet_unet.set_attention_slice(attention_slicing)
else:
controlnet_unet.set_attn_processor(AttnProcessor())
onnx_export(
controlnet_unet,
model_args=(
torch.randn(2, unet_in_channels, unet_sample_size,
unet_sample_size).to(device=device, dtype=dtype),
torch.randn(2).to(device=device, dtype=dtype),
torch.randn(2, num_tokens, text_hidden_size).to(device=device, dtype=dtype),
torch.randn(2, 320, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype),
torch.randn(2, 320, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype),
torch.randn(2, 320, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype),
torch.randn(2, 320, unet_sample_size//2,unet_sample_size//2).to(device=device, dtype=dtype),
torch.randn(2, 640, unet_sample_size//2,unet_sample_size//2).to(device=device, dtype=dtype),
torch.randn(2, 640, unet_sample_size//2,unet_sample_size//2).to(device=device, dtype=dtype),
torch.randn(2, 640, unet_sample_size//4,unet_sample_size//4).to(device=device, dtype=dtype),
torch.randn(2, 1280, unet_sample_size//4,unet_sample_size//4).to(device=device, dtype=dtype),
torch.randn(2, 1280, unet_sample_size//4,unet_sample_size//4).to(device=device, dtype=dtype),
torch.randn(2, 1280, unet_sample_size//8,unet_sample_size//8).to(device=device, dtype=dtype),
torch.randn(2, 1280, unet_sample_size//8,unet_sample_size//8).to(device=device, dtype=dtype),
torch.randn(2, 1280, unet_sample_size//8,unet_sample_size//8).to(device=device, dtype=dtype),
torch.randn(2, 1280, unet_sample_size//8,unet_sample_size//8).to(device=device, dtype=dtype),
False,
),
output_path=unet_path,
ordered_input_names=[
"sample",
"timestep",
"encoder_hidden_states",
"down_block_0",
"down_block_1",
"down_block_2",
"down_block_3",
"down_block_4",
"down_block_5",
"down_block_6",
"down_block_7",
"down_block_8",
"down_block_9",
"down_block_10",
"down_block_11",
"mid_block_additional_residual",
"return_dict"
],
output_names=["out_sample"], # has to be different from "sample" for correct tracing
dynamic_axes={
"sample": {0: "cnet_sample_batch", 1: "cnet_sample_channels", 2: "cnet_sample_height", 3: "cnet_sample_width"},
"timestep": {0: "cnet_timestep_batch"},
"encoder_hidden_states": {0: "cnet_ehs_batch", 1: "cnet_ehs_sequence"},
"down_block_0": {0: "cnet_db0_batch", 2: "cnet_db0_height", 3: "cnet_db0_width"},
"down_block_1": {0: "cnet_db1_batch", 2: "cnet_db1_height", 3: "cnet_db1_width"},
"down_block_2": {0: "cnet_db2_batch", 2: "cnet_db2_height", 3: "cnet_db2_width"},
"down_block_3": {0: "cnet_db3_batch", 2: "cnet_db3_height2", 3: "cnet_db3_width2"},
"down_block_4": {0: "cnet_db4_batch", 2: "cnet_db4_height2", 3: "cnet_db4_width2"},
"down_block_5": {0: "cnet_db5_batch", 2: "cnet_db5_height2", 3: "cnet_db5_width2"},
"down_block_6": {0: "cnet_db6_batch", 2: "cnet_db6_height4", 3: "cnet_db6_width4"},
"down_block_7": {0: "cnet_db7_batch", 2: "cnet_db7_height4", 3: "cnet_db7_width4"},
"down_block_8": {0: "cnet_db8_batch", 2: "cnet_db8_height4", 3: "cnet_db8_width4"},
"down_block_9": {0: "cnet_db9_batch", 2: "cnet_db9_height8", 3: "cnet_db9_width8"},
"down_block_10": {0: "cnet_db10_batch", 2: "cnet_db10_height8", 3: "cnet_db10_width8"},
"down_block_11": {0: "cnet_db11_batch", 2: "cnet_db11_height8", 3: "cnet_db11_width8"},
"mid_block_additional_residual": {0: "cnet_mbar_batch", 2: "cnet_mbar_height8", 3: "cnet_mbar_width8"},
},
opset=opset,
)
controlnet = ControlNetModel.from_pretrained(controlnet_path, low_cpu_mem_usage=False)
controlnet.set_attention_slice("max")
cnet_path = output_path / "controlnet" / "model.onnx"
onnx_export(
controlnet,
model_args=(
torch.randn(2, 4, 64, 64).to(device=device, dtype=dtype),
torch.randn(2).to(device=device, dtype=dtype),
torch.randn(2, 77, 768).to(device=device, dtype=dtype),
torch.randn(2, 3, 512,512).to(device=device, dtype=dtype),
),
output_path=cnet_path,
ordered_input_names=["sample", "timestep", "encoder_hidden_states", "controlnet_cond"],
output_names=["down_block_res_samples", "mid_block_res_sample"],
dynamic_axes={
"sample": {0: "unet_sample_batch", 1: "unet_sample_channels", 2: "unet_sample_height", 3: "unet_sample_width"},
"timestep": {0: "unet_timestep_batch"},
"encoder_hidden_states": {0: "unet_ehs_batch", 1: "unet_ehs_sequence"},
"controlnet_cond": {0: "unet_cnetcond_batch", 2: "unet_cnetcond_height", 3: "unet_cnetcond_width"}
},
opset=opset,
)
cnet_model_path = str(cnet_path.absolute().as_posix())
if fp16:
convert_to_fp16(cnet_model_path)
else:
onnx_export(
pipeline.unet,
model_args=(
torch.randn(2, unet_in_channels, unet_sample_size,
unet_sample_size).to(device=device, dtype=dtype),
torch.randn(2).to(device=device, dtype=dtype),
torch.randn(2, num_tokens, text_hidden_size).to(device=device, dtype=dtype),
False,
),
output_path=unet_path,
ordered_input_names=["sample", "timestep", "encoder_hidden_states", "return_dict"],
output_names=["out_sample"], # has to be different from "sample" for correct tracing
dynamic_axes={
"sample": {0: "unet_sample_batch", 1: "unet_sample_channels", 2: "unet_sample_height", 3: "unet_sample_width"},
"timestep": {0: "unet_timestep_batch"},
"encoder_hidden_states": {0: "unet_ehs_batch", 1: "unet_ehs_sequence"},
},
opset=opset,
)
del pipeline.unet
unet_model_path = str(unet_path.absolute().as_posix())
if not notune:
tune_model(unet_model_path, "unet", fp16)
elif fp16:
convert_to_fp16(unet_model_path)
# VAE ENCODER
vae_encoder = pipeline.vae
vae_in_channels = vae_encoder.config.in_channels
vae_sample_size = vae_encoder.config.sample_size
# need to get the raw tensor output (sample) from the encoder
vae_encoder.forward = lambda sample, return_dict: vae_encoder.encode(sample,
return_dict)[0].sample()
onnx_export(
vae_encoder,
model_args=(
torch.randn(1, vae_in_channels, vae_sample_size,
vae_sample_size).to(device=device, dtype=dtype),
False,
),
output_path=output_path / "vae_encoder" / "model.onnx",
ordered_input_names=["sample", "return_dict"],
output_names=["latent_sample"],
dynamic_axes={
"sample": {0: "vaeenc_sample_batch", 1: "vaeenc_sample_channels", 2: "vaeenc_sample_height", 3: "vaeenc_sample_width"},
},
opset=opset,
)
# VAE DECODER
vae_decoder = pipeline.vae
vae_latent_channels = vae_decoder.config.latent_channels
vae_out_channels = vae_decoder.config.out_channels
vae_dec_path = output_path / "vae_decoder" / "model.onnx"
# forward only through the decoder part
vae_decoder.forward = vae_encoder.decode
onnx_export(
vae_decoder,
model_args=(
torch.randn(1, vae_latent_channels, unet_sample_size,
unet_sample_size).to(device=device, dtype=dtype),
False,
),
output_path=vae_dec_path,
ordered_input_names=["latent_sample", "return_dict"],
output_names=["sample"],
dynamic_axes={
"latent_sample": {0: "vaedec_sample_batch", 1: "vaedec_sample_channels", 2: "vaedec_sample_height", 3: "vaedec_sample_width"},
},
opset=opset,
)
vae_dec_model_path = str(vae_dec_path.absolute().as_posix())
if not notune:
tune_model(vae_dec_model_path, "vae", fp16)
elif fp16:
convert_to_fp16(vae_dec_model_path)
del pipeline.vae
# SAFETY CHECKER
# NOTE:
# Safety checker is excluded because it is a resource hog and you'd be turning it off anyway
# I'm not a legal expert but IMHO you are still bound by the model's license after conversion
# Check the license of the model you are converting and abide by it
safety_checker = None
feature_extractor = None
onnx_pipeline = OnnxStableDiffusionPipeline(
vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_encoder",
low_cpu_mem_usage=False),
vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_decoder",
low_cpu_mem_usage=False, provider="DmlExecutionProvider"),
text_encoder=OnnxRuntimeModel.from_pretrained(output_path / "text_encoder",
low_cpu_mem_usage=False),
tokenizer=pipeline.tokenizer,
unet=OnnxRuntimeModel.from_pretrained(output_path / "unet",
low_cpu_mem_usage=False, provider="DmlExecutionProvider"),
scheduler=pipeline.scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
requires_safety_checker=safety_checker is not None,
)
onnx_pipeline.save_pretrained(output_path)
if controlnet_path:
confname=f"{output_path}/model_index.json"
with open(confname, 'r', encoding="utf-8") as f:
modelconf = json.load(f)
modelconf['controlnet'] = ("diffusers","OnnxRuntimeModel")
with open(confname, 'w', encoding="utf-8") as f:
json.dump(modelconf, f, indent=1)
print("ONNX pipeline saved to", output_path)
del pipeline
del onnx_pipeline
_ = OnnxStableDiffusionPipeline.from_pretrained(output_path,
provider="DmlExecutionProvider",
low_cpu_mem_usage=False)
print("ONNX pipeline is loadable")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
required=True,
help=(
"Path to the `diffusers` checkpoint to convert (either local directory or on the Hub). "
"Or the path to a local checkpoint saved in .ckpt or .safetensors."
)
)
parser.add_argument(
"--output_path",
type=str,
required=True,
help="Path to the output model."
)
parser.add_argument(
"--vae_path",
default="",
type=str,
help=(
"Path to alternate VAE `diffusers` checkpoint (either local or on the Hub). "
)
)
parser.add_argument(
"--controlnet_path",
default="",
type=str,
help=(
"Path to controlnet model to import and convert (either local or on the Hub). "
"Setting this results in an SD model intended to be used with a specific ControlNet"
)
)
parser.add_argument(
"--opset",
default=17,
type=int,
help="The version of the ONNX operator set to use.",
)
parser.add_argument(
"--fp16",
action="store_true",
help="Export Text Encoder and UNET in mixed `float16` mode"
)
parser.add_argument(
"--notune",
action="store_true",
help="Turn off tuning UNET with ONNX Runtime Transformers"
)
parser.add_argument(
"--attention-slicing",
choices={"auto","max"},
type=str,
help=(
"Attention slicing reduces VRAM needed, off by default. Set to auto or max. "
"WARNING: slows down generation, only max will give a significant VRAM reduction"
)
)
parser.add_argument(
"--clip-skip",
choices={2,3,4},
type=int,
help="Add permanent clip skip to ONNX model."
)
parser.add_argument(
"--diffusers-output",
type=str,
help="Directory to dump a pre-conversion copy in diffusers format in."
)
parser.add_argument(
"--ckpt-original-config-file",
default=None,
type=str,
help="The YAML config file corresponding to the original architecture."
)
parser.add_argument(
"--ckpt-image-size",
default=None,
type=int,
help="The image size that the model was trained on. Typically 512 or 768"
)
parser.add_argument(
"--ckpt-prediction_type",
default=None,
type=str,
help=(
"Prediction type the model was trained on. "
"'epsilon' for SD v1.X and SD v2 Base, 'v-prediction' for SD v2"
)
)
parser.add_argument(
"--ckpt-pipeline_type",
default=None,
type=str,
help="The pipeline type. If `None` pipeline will be automatically inferred."
)
parser.add_argument(
"--ckpt-extract-ema",
action="store_true",
help=(
"Only relevant for checkpoints that have both EMA and non-EMA weights. "
"If set enables extraction of EMA weights (Default is non-EMA). "
"EMA weights usually yield higher quality images for inference. "
"Non-EMA weights are usually better to continue fine-tuning."
)
)
parser.add_argument(
"--ckpt-num-in-channels",
default=None,
type=int,
help=(
"The number of input channels. "
"If `None` number of input channels will be automatically inferred."
)
)
parser.add_argument(
"--ckpt-upcast-attention",
action="store_true",
help=(
"Whether the attention computation should always be upcasted. "
"Necessary when running SD 2.1"
)
)
args = parser.parse_args()
dtype=torch.float32
device = "cpu"
if args.model_path.endswith(".ckpt") or args.model_path.endswith(".safetensors"):
pl = download_from_original_stable_diffusion_ckpt(
checkpoint_path_or_dict=args.model_path,
original_config_file=args.ckpt_original_config_file,
image_size=args.ckpt_image_size,
prediction_type=args.ckpt_prediction_type,
model_type=args.ckpt_pipeline_type,
extract_ema=args.ckpt_extract_ema,
scheduler_type="pndm",
num_in_channels=args.ckpt_num_in_channels,
upcast_attention=args.ckpt_upcast_attention,
from_safetensors=args.model_path.endswith(".safetensors")
)
else:
pl = StableDiffusionPipeline.from_pretrained(args.model_path,
torch_dtype=dtype,low_cpu_mem_usage=False).to(device)
if args.vae_path:
with tempfile.TemporaryDirectory() as tmpdirname:
pl.save_pretrained(tmpdirname)
if args.vae_path.endswith('/vae'):
vae = AutoencoderKL.from_pretrained(args.vae_path[:-4],subfolder='vae',
low_cpu_mem_usage=False)
else:
vae = AutoencoderKL.from_pretrained(args.vae_path,low_cpu_mem_usage=False)
pl = StableDiffusionPipeline.from_pretrained(tmpdirname,
torch_dtype=dtype, vae=vae,low_cpu_mem_usage=False).to(device)
if args.clip_skip:
with tempfile.TemporaryDirectory() as tmpdirname:
pl.save_pretrained(tmpdirname)
confname=f"{tmpdirname}/text_encoder/config.json"
with open(confname, 'r', encoding="utf-8") as f:
clipconf = json.load(f)
clipconf['num_hidden_layers'] = clipconf['num_hidden_layers']-args.clip_skip+1
with open(confname, 'w', encoding="utf-8") as f:
json.dump(clipconf, f, indent=1)
pl = StableDiffusionPipeline.from_pretrained(tmpdirname,
torch_dtype=dtype,low_cpu_mem_usage=False).to(device)
if args.attention_slicing:
blocktune=True
pl.enable_attention_slicing(args.attention_slicing)
else:
blocktune=False
# Enabling legacy Attention Processor allows tuning to convert it into MultiHeadAttention
pl.unet.set_attn_processor(AttnProcessor())
if args.diffusers_output:
pl.save_pretrained(args.diffusers_output)
convert_models(pl, args.output_path,
args.opset,
args.fp16,
args.notune or blocktune,
args.controlnet_path,
args.attention_slicing)