Skip to content

Latest commit

 

History

History
43 lines (35 loc) · 1.43 KB

README.md

File metadata and controls

43 lines (35 loc) · 1.43 KB

Face-detection-using-vgg16

Project Overview: Face Detection using VGG16 and TensorFlow

Files:

  1. face_detection.ipynb: Contains the model training with 99% validation accuracy.
  2. live_face_detection.py: Utilizes OpenCV for real-time face detection.
  3. Demo Images: For testing purposes.
  4. screen_shot.png (1 & 2): Captures of live face detection.
  5. hasrcasecade_face_frontage_default.xml: Used for detecting face shapes in live footage.

Dependencies:

  1. Tensorflow(1.13.1)
  2. Keras(2.3.1)
  3. OpenCV2(4.1.1)
  4. Python(3.7.7)
  5. Anaconda(4.7.11)

Setup Instructions:

  1. Download the entire repository.
  2. Use your dataset.
  3. Open and run all cells in face_detection.ipynb using Jupyter Notebook.

Notebook Workflow:

  • Import necessary libraries.
  • Define variables (e.g., image_size, train/test paths).
  • Download and integrate VGG16.
  • Construct and train the model, validate, and plot accuracies.
  • Test the model using a sample image.
  • Save the model as 'Final_Model_Face.h5'.

Live Detection (live_face_detection.py):

  • Import libraries and load 'Final_Model_Face.h5'.
  • Ensure webcam functionality.
  • Use 'haarcascade_frontalface_default.xml' for live facial detection.
  • Convert detected faces to array for model prediction.
  • Display predictions (Ash, Malav, Nani) on live camera feed.
  • For any issues, check paths and installed modules.

Thank you.
Ashish
linkedin : https://www.linkedin.com/in/ashishbarvaliya/