-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathinference.py
116 lines (96 loc) · 4.31 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import argparse
import csv
import json
import os
from datetime import datetime
import random
import logging
import numpy as np
import torch
from model.gpt2_trainer import FinetuneGPT2
start_datetime = datetime.now().strftime("%Y-%m-%d_%H:%M:%S")
def inference(args):
gpt_model = FinetuneGPT2(args)
gpt_model.build_model(args.checkpoint, with_tokenizer=False)
sentences = []
with open(args.data_path) as f:
reader = csv.reader(f)
for corrupted, _ in reader:
sentences.append(corrupted)
if args.toy is True:
sentences = sentences[:4]
logging.info("START INFERENCE")
seq_list = gpt_model.generate_text(
sentences,
max_length=args.max_length,
decoding=args.decoding,
suffix='[SEP]'
)
logging.info("DONE INFERENCE")
logging.info("Save to {}".format(args.save))
os.makedirs(os.path.dirname(args.save), exist_ok=True)
with open(args.save, 'w') as f:
for idx, generated in enumerate(seq_list):
if isinstance(generated, list):
for seq in generated:
f.write('{}\t{}\n'.format(idx, seq))
else:
f.write('{}\t{}\n'.format(idx, generated))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', type=str,
default='./data/QQP_split/test_input_preprocessed.txt',
help='Dataset file to paraphrase')
parser.add_argument('--checkpoint', type=str,
help='Path to LOAD model checkpoint')
parser.add_argument('--model', type=str, default='gpt2-medium',
help='pretrained model name (to load tokenizer)')
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--save', type=str, default=None,
help='File name to save generated sentences')
parser.add_argument('--log', type=str, default=None,
help='Log filename')
parser.add_argument('--max_length', type=int, default=1024,
help='Maximum number of tokens for each sequence')
parser.add_argument('--decoding', type=str, default='sampling',
help='{greedy, sampling, beam}')
parser.add_argument('--beam_size', type=int, default=8,
help='Beam size for beam search decoding')
parser.add_argument('--k', type=int, default=0,
help='k for top-k sampling (0 for deactivate)')
parser.add_argument('--p', type=float, default=1.0,
help='p for necleus (top-p) sampling')
parser.add_argument('--temperature', type=float, default=1.0,
help='temperature for sampling-based decoding')
parser.add_argument('--num_generate', type=int, default=1,
help='How many sequences are generated')
parser.add_argument('--tag', type=str, default='',
help='Add a suffix of checkpoints')
parser.add_argument('--debug', action="store_true")
parser.add_argument('--seed', type=int, default=1234)
parser.add_argument('--toy', action='store_true')
args = parser.parse_args()
args.decoding_name = args.decoding
if args.decoding == 'beam':
args.decoding_name += '-{}'.format(args.beam_size)
raise NotImplementedError # TODO
elif args.decoding == 'sampling':
args.decoding_name = 'top-{}'.format(args.k)
args.decoding_name += '-p{}'.format(args.p).replace('.', '_')
args.decoding_name += '-T{}'.format(args.temperature).replace('.', '_')
filename = "inferenced_{}_seed{}_{}".format(
args.decoding_name, args.seed, args.tag + '_' + start_datetime)
if args.save is None:
args.save = "./results/{}.txt".format(filename)
if args.log is None:
args.log = './logs/{}.log'.format(filename)
log_format = '%(asctime)s [%(levelname)s] %(message)s'
log_level = logging.DEBUG if args.debug else logging.INFO
logging.basicConfig(level=log_level, format=log_format, filename=args.log)
logging.getLogger().setLevel(log_level)
# Reproducibility
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
logging.info('Parsed args: ' + json.dumps(dict(args.__dict__), indent=2))
inference(args)