-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdinz.py
63 lines (48 loc) · 1.82 KB
/
dinz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import cv2
import mediapipe as mp
import numpy as np
import keyboard
mp_drawing = mp.solutions.drawing_utils
mp_pose = mp.solutions.pose
# Initialize MediaPipe Pose model
pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)
# Function to check if the person has jumped
def check_jump(landmarks):
# Get the y-coordinate of relevant landmarks
left_shoulder_y = landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y
left_hip_y = landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].y
right_shoulder_y = landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].y
right_hip_y = landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value].y
# Calculate the average y-coordinate of shoulders and hips
avg_shoulder_y = (left_shoulder_y + right_shoulder_y) / 2
avg_hip_y = (left_hip_y + right_hip_y) / 2
# If the average shoulder y-coordinate is higher than the average hip y-coordinate, it indicates a jump
if avg_shoulder_y < avg_hip_y:
return True
else:
return False
# Function to simulate pressing the up arrow key
def jump():
keyboard.press('up')
keyboard.release('up')
cap = cv2.VideoCapture(0)
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Convert the image to RGB
image_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Detect pose landmarks
results = pose.process(image_rgb)
if results.pose_landmarks:
# Visualize the pose landmarks
mp_drawing.draw_landmarks(frame, results.pose_landmarks, mp_pose.POSE_CONNECTIONS)
# Check for a jump
if check_jump(results.pose_landmarks.landmark):
jump()
cv2.imshow('MediaPipe Pose Detection', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
pose.close()
cap.release()
cv2.destroyAllWindows()