-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
534 lines (419 loc) · 16.5 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
from flask import (
Flask,
render_template,
request,
flash,
url_for,
redirect,
session,
send_file,
)
from bokeh.embed import components
from bokeh.plotting import figure
from bokeh.resources import INLINE
from werkzeug.utils import secure_filename
import tempfile
import traceback
from datetime import timedelta
import os, sys
import stlearn
import scanpy
import numpy
import numpy as np
import asyncio
from bokeh.server.server import BaseServer
from bokeh.server.tornado import BokehTornado
from tornado.httpserver import HTTPServer
from tornado.ioloop import IOLoop
from bokeh.application import Application
from bokeh.application.handlers import FunctionHandler
from bokeh.server.server import Server
from bokeh.embed import server_document
from bokeh.layouts import column, row
# Functions related to processing the forms.
from source.forms import views # for changing data in response to input
# Global variables.
global adata # Storing the data
adata = None
global step_log # Keeps track of what step we're up to (performed preprocessing?)
step_log = {
"uploaded": [False, "Upload file"],
"preprocessed": [False, "Preprocessing"],
"clustering": [False, "Clustering"],
"psts": [False, "Spatial trajectory"],
"dea": [False, "DEA"],
"lr": [False, "Ligand-receptor analysis"],
"cci": [False, "CCI"],
# _params suffix important for templates/progress.html
"preprocessed_params": {},
"cci_params": {},
"cluster_params": {},
"psts_params": {},
"dea_params": {},
"lr_params": {},
}
# print(stlearn, file=sys.stdout)
server = Flask(__name__)
server.secret_key = b'_5#y2L"F4Q8z\n\xec]/'
server.config["PERMANENT_SESSION_LIFETIME"] = timedelta(seconds=20)
UPLOAD_FOLDER = "uploads/"
TEMPLATES_AUTO_RELOAD = True
server.config["UPLOAD_FOLDER"] = UPLOAD_FOLDER
server.config["SEND_FILE_MAX_AGE_DEFAULT"] = 0
server.config["TEMPLATES_AUTO_RELOAD"] = TEMPLATES_AUTO_RELOAD
server.config["SESSION_PERMANENT"] = False
@server.route("/", methods=["GET"])
def index():
return render_template("index.html", step_log=step_log)
@server.route("/upload")
def upload():
return render_template("upload.html", step_log=step_log, flash_bool=True)
@server.route("/preprocessing", methods=["GET", "POST"])
def preprocessing():
global adata, step_log
updated_page = views.run_preprocessing(request, adata, step_log)
return updated_page
@server.route("/clustering", methods=["GET", "POST"])
def clustering():
global adata, step_log
updated_page = views.run_clustering(request, adata, step_log)
return updated_page
@server.route("/lr", methods=["GET", "POST"])
def lr():
global adata, step_log
updated_page = views.run_lr(request, adata, step_log)
return updated_page
@server.route("/cci", methods=["GET", "POST"])
def cci():
global adata, step_log
updated_page = views.run_cci(request, adata, step_log)
return updated_page
@server.route("/psts", methods=["GET", "POST"])
def psts():
global adata, step_log
if "clusters" not in adata.obs.columns:
return redirect(url_for("choose_cluster"))
else:
updated_page = views.run_psts(request, adata, step_log)
return updated_page
@server.route("/dea", methods=["GET", "POST"])
def dea():
global adata, step_log
updated_page = views.run_dea(request, adata, step_log)
return updated_page
allow_files = [
"filtered_feature_bc_matrix.h5",
"tissue_hires_image.png",
"tissue_lowres_image.png",
"tissue_positions_list.csv",
"scalefactors_json.json",
]
@server.route("/folder_uploader", methods=["GET", "POST"])
def folder_uploader():
if request.method == "POST":
# Clean uploads folder before upload a new data
import shutil
shutil.rmtree(server.config["UPLOAD_FOLDER"])
os.makedirs(server.config["UPLOAD_FOLDER"])
open(server.config["UPLOAD_FOLDER"] + "/.gitkeep", "a").close()
# os.mknod()
# Get list of files from selected folder
files = request.files.getlist("file")
os.mkdir(os.path.join(server.config["UPLOAD_FOLDER"], "spatial"))
# allow_upload_files = list(map(lambda x: x ),allow_files)
uploaded = []
i = 0
for file in files:
filename = secure_filename(file.filename)
print(filename)
if allow_files[0] in filename:
file.save(os.path.join(server.config["UPLOAD_FOLDER"], filename))
os.rename(
os.path.join(server.config["UPLOAD_FOLDER"], filename),
os.path.join(server.config["UPLOAD_FOLDER"], allow_files[0]),
)
uploaded.append(allow_files[0])
for allow_file in allow_files[1:]:
if allow_file in filename:
file.save(
os.path.join(
server.config["UPLOAD_FOLDER"] + "/spatial", filename
)
)
os.rename(
os.path.join(
server.config["UPLOAD_FOLDER"] + "/spatial", filename
),
os.path.join(
server.config["UPLOAD_FOLDER"] + "/spatial", allow_file
),
)
uploaded.append(allow_file)
i += 1
if len(uploaded) == 5:
flash("File uploaded successfully")
global adata, step_log
# step_log = {
# "uploaded": [False, "Upload file"],
# "preprocessed": [False, "Preprocessing"],
# "clustering": [False, "Clustering"],
# "psts": [False, "Spatial trajectory"],
# "cci_rank": [False, "Cell-cell interaction"],
# "dea": [False, "Differential expression analysis"],
# # _params suffix important for templates/progress.html
# "preprocessed_params": {},
# "cci_params": {},
# "cluster_params": {},
# "psts_params": {},
# "dea_params": {},
# }
adata = stlearn.Read10X(server.config["UPLOAD_FOLDER"])
adata.var_names_make_unique() # removing duplicates
# ensuring compatible format for CCI, since need _ to pair LRs #
adata.var_names = numpy.array(
[var_name.replace("_", "-") for var_name in adata.var_names]
)
step_log["uploaded"][0] = True
return redirect(url_for("upload"))
if len(uploaded) != 5:
missing_files = []
for file in allow_files:
if file not in uploaded:
missing_files.append(file)
flash("Upload ERROR: Missing " + ", ".join(missing_files))
return redirect(url_for("upload"))
@server.route("/file_uploader", methods=["GET", "POST"])
def file_uploader():
if request.method == "POST":
global adata, step_log
# Clean uploads folder before upload a new data
import shutil
shutil.rmtree(server.config["UPLOAD_FOLDER"])
os.makedirs(server.config["UPLOAD_FOLDER"])
open(server.config["UPLOAD_FOLDER"] + "/.gitkeep", "a").close()
# os.mknod()
f = request.files["file"]
filename = secure_filename(f.filename)
f.save(os.path.join(server.config["UPLOAD_FOLDER"], filename))
try:
adata = scanpy.read_h5ad(server.config["UPLOAD_FOLDER"] + "/" + f.filename)
except:
flash("Upload ERROR: Please choose the right AnnData file ")
### Updating log file with current anndata state ###
step_log["uploaded"][0] = True
if "n_cells" in adata.var.columns:
step_log["preprocessed"][0] = True
for col in adata.obs.columns:
if adata.obs[col].dtype.name == "category":
if col != "sub_cluster_labels":
step_log["clustering"][0] = True
if "global_graph" in adata.uns:
step_log["psts"][0] = True
step_log["lr"][0] = "lr_summary" in adata.uns
step_log["cci"][0] = np.any(["lr_cci_" in key for key in adata.uns])
return redirect(url_for("upload"))
@server.route("/choose_cluster", methods=["GET", "POST"])
def choose_cluster():
menu = []
for col in adata.obs.columns:
if adata.obs[col].dtype.name == "category":
if col != "sub_cluster_labels":
menu.append(col)
return render_template(
"choose_cluster.html",
template="Flask",
relative_urls=False,
step_log=step_log,
menu=menu,
)
@server.route("/convert_clusters", methods=["GET", "POST"])
def convert_clusters():
if request.method == "POST":
adata.obs["clusters"] = adata.obs[request.form["convert_clusters"]]
scanpy.tl.paga(adata, groups="clusters")
stlearn.pl.cluster_plot(adata, use_label="clusters")
return redirect(url_for("psts"))
@server.route("/gene_plot")
def gene_plot():
script = server_document(
"http://%s:5006/bokeh_gene_plot" % request.host.split(":")[0]
)
return render_template(
"gene_plot.html",
script=script,
template="Flask",
relative_urls=False,
step_log=step_log,
)
@server.route("/cluster_plot")
def cluster_plot():
script = server_document(
"http://%s:5006/bokeh_cluster_plot" % request.host.split(":")[0]
)
return render_template(
"cluster_plot.html",
script=script,
template="Flask",
relative_urls=False,
step_log=step_log,
)
@server.route("/lr_plot")
def lr_plot():
script = server_document(
"http://%s:5006/bokeh_lr_plot" % request.host.split(":")[0]
)
return render_template(
"lr_plot.html",
script=script,
template="Flask",
relative_urls=False,
step_log=step_log,
)
@server.route("/spatial_cci_plot")
def spatial_cci_plot():
script = server_document(
"http://%s:5006/bokeh_spatial_cci_plot" % request.host.split(":")[0]
)
return render_template(
"spatial_cci_plot.html",
script=script,
template="Flask",
relative_urls=False,
step_log=step_log,
)
@server.route("/annotate_plot")
def annotate_plot():
script = server_document(
"http://%s:5006/bokeh_annotate_plot" % request.host.split(":")[0]
)
return render_template(
"annotate_plot.html",
script=script,
template="Flask",
relative_urls=False,
step_log=step_log,
)
@server.route("/save_adata", methods=["POST"])
def save_adata():
if request.method == "POST":
fd, path = tempfile.mkstemp()
from datetime import datetime
now = datetime.now()
date_time = now.strftime("%m-%d-%Y_%H-%M-%S")
adata.write_h5ad(path)
return send_file(
path, as_attachment=True, attachment_filename="adata_" + date_time + ".h5ad"
)
# import stlearn as st
# import scanpy as sc
# adata = st.Read10X("/home/d.pham/10X/TBI_C1/")
# adata.raw = adata
# sc.pp.filter_genes(adata,min_cells=3)
# sc.pp.normalize_total(adata)
# sc.pp.log1p(adata)
# sc.pp.highly_variable_genes(adata, min_mean=0.0125, max_mean=3, min_disp=0.5)
# adata = adata[:, adata.var.highly_variable]
# sc.pp.scale(adata)g
# adata.uns["lr"] = ['Gfap_Ctss']
# st.tl.cci_rank.lr(adata=adata)
# st.tl.cci_rank.permutation(adata,n_pairs=1)
# sc.pp.pca(adata)
# sc.pp.neighbors(adata)
# sc.tl.leiden(adata,resolution=0.6)
# adata.uns["iroot"] = 3733
# st.spatial.trajectory.pseudotime(adata,eps=100,use_rep="X_pca",use_sme=False,use_label="leiden")
# st.spatial.trajectory.pseudotimespace_global(adata,use_label="leiden",list_cluster=[6,7])
# st.pl.cluster_plot(adata,use_label="leiden",show_plot=False)
def modify_doc_gene_plot(doc):
from stlearn.plotting.classes_bokeh import BokehGenePlot
gp_object = BokehGenePlot(adata)
doc.add_root(row(gp_object.layout, width=800))
gp_object.data_alpha.on_change("value", gp_object.update_data)
gp_object.tissue_alpha.on_change("value", gp_object.update_data)
gp_object.spot_size.on_change("value", gp_object.update_data)
gp_object.gene_select.on_change("value", gp_object.update_data)
gp_object.cmap_select.on_change("value", gp_object.update_data)
if len(gp_object.menu) != 0:
gp_object.use_label.on_change("value", gp_object.update_data)
gp_object.output_backend.on_change("value", gp_object.update_data)
def modify_doc_cluster_plot(doc):
from stlearn.plotting.classes_bokeh import BokehClusterPlot
gp_object = BokehClusterPlot(adata)
doc.add_root(row(gp_object.layout, width=800))
gp_object.use_label.on_change("value", gp_object.update_list)
gp_object.use_label.on_change("value", gp_object.update_data)
gp_object.data_alpha.on_change("value", gp_object.update_data)
gp_object.tissue_alpha.on_change("value", gp_object.update_data)
gp_object.spot_size.on_change("value", gp_object.update_data)
gp_object.list_cluster.on_change("active", gp_object.update_data)
gp_object.checkbox_group.on_change("active", gp_object.update_data)
gp_object.output_backend.on_change("value", gp_object.update_data)
if "rank_genes_groups" in adata.uns:
gp_object.n_top_genes.on_change("value", gp_object.update_data)
gp_object.cmap_select.on_change("value", gp_object.update_data)
gp_object.plot_select.on_change("value", gp_object.update_data)
gp_object.min_logfoldchange.on_change("value", gp_object.update_data)
def modify_doc_spatial_cci_plot(doc):
from stlearn.plotting.classes_bokeh import BokehSpatialCciPlot
gp_object = BokehSpatialCciPlot(adata)
doc.add_root(row(gp_object.layout, width=800))
gp_object.annot_select.on_change("value", gp_object.update_list)
gp_object.annot_select.on_change("value", gp_object.update_data)
gp_object.lr_select.on_change("value", gp_object.update_data)
gp_object.data_alpha.on_change("value", gp_object.update_data)
gp_object.tissue_alpha.on_change("value", gp_object.update_data)
gp_object.spot_size.on_change("value", gp_object.update_data)
gp_object.list_cluster.on_change("active", gp_object.update_data)
gp_object.output_backend.on_change("value", gp_object.update_data)
def modify_doc_lr_plot(doc):
from stlearn.plotting.classes_bokeh import BokehLRPlot
gp_object = BokehLRPlot(adata)
doc.add_root(row(gp_object.layout, width=800))
gp_object.data_alpha.on_change("value", gp_object.update_data)
gp_object.tissue_alpha.on_change("value", gp_object.update_data)
gp_object.spot_size.on_change("value", gp_object.update_data)
# gp_object.het_select.on_change("value", gp_object.update_data)
gp_object.lr_select.on_change("value", gp_object.update_data)
gp_object.output_backend.on_change("value", gp_object.update_data)
def modify_doc_annotate_plot(doc):
from stlearn.plotting.classes_bokeh import Annotate
gp_object = Annotate(adata)
doc.add_root(row(gp_object.layout, width=800))
gp_object.data_alpha.on_change("value", gp_object.update_data)
gp_object.tissue_alpha.on_change("value", gp_object.update_data)
gp_object.spot_size.on_change("value", gp_object.update_data)
# App for gene_plot
bkapp = Application(FunctionHandler(modify_doc_gene_plot))
# App for cluster_plot
bkapp2 = Application(FunctionHandler(modify_doc_cluster_plot))
# App for lr_plot
bkapp3 = Application(FunctionHandler(modify_doc_lr_plot))
# App for cci_spatial_plot
bkapp3_1 = Application(FunctionHandler(modify_doc_spatial_cci_plot))
# App for annotate_plot
bkapp4 = Application(FunctionHandler(modify_doc_annotate_plot))
def bk_worker():
asyncio.set_event_loop(asyncio.new_event_loop())
server = Server(
{
"/bokeh_gene_plot": bkapp,
"/bokeh_cluster_plot": bkapp2,
# "/bokeh_cci_plot": bkapp3,
"/bokeh_lr_plot": bkapp3,
"/bokeh_spatial_cci_plot": bkapp3_1,
"/bokeh_annotate_plot": bkapp4,
},
io_loop=IOLoop(),
allow_websocket_origin=[
"127.0.0.1:8000",
"localhost:8000",
"0.0.0.0:8000",
"*",
],
)
server.start()
server.io_loop.start()
from threading import Thread
Thread(target=bk_worker).start()
# if __name__ == "__main__":
# app.run(host="0.0.0.0", port=5005, debug=True, use_reloader=True)