forked from DCASE-REPO/bulbul_bird_detection_dcase2018
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.sh
executable file
·384 lines (324 loc) · 13.6 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
#!/bin/bash
# Training and prediction for the QMUL Bird audio detection challenge 2017
# http://machine-listening.eecs.qmul.ac.uk/bird-audio-detection-challenge/
# Thomas Grill <[email protected]>
here="${0%/*}"
# import general configuration
. "$here/config.inc"
# import spectral parametrization
. "$here/spectral_features.inc"
# import network/learning configuration
. "$here/network_${NETWORK}.inc"
LISTPATH="$WORKPATH/filelists"
SPECTPATH="$WORKPATH/spect"
# locations of prediction files
first_predictions="$WORKPATH/prediction_first.csv"
second_predictions="$WORKPATH/prediction_second.csv"
final_predictions="$WORKPATH/prediction_final.csv"
# pre-expand the list of test filelists, needed by some of the python methods
testfilelists="$LABELPATH`echo "$TEST" | sed -E "s# +#.csv,$LABELPATH#g"`.csv"
# colored text if possible
if command -v tput >/dev/null 2>&1; then
text_bold=$(tput bold)
text_boldblue=$(tput setaf 4)
text_normal=$(tput sgr0)
else
text_bold=
text_boldblue=
text_normal=
fi
function echo_info {
echo -e "${text_boldblue}${@}${text_normal}"
}
function echo_status {
echo -e "${text_bold}${@}${text_normal}"
}
function email_status {
if [ "${EMAIL}" != "" ]; then
echo -e "Subject: run.sh - ${1}\n${@:2}" | sendmail "${EMAIL}"
fi
}
#############################
# define training
#############################
function train_model {
model="$1" # model including path
filelists="$2" # file list to use
extralabels="$3"
seed="$4"
cmdargs="${@:5}"
echo_status "Computing model ${model} with network ${NETWORK}."
"$here/code/simplenn_main.py" \
--mode=train \
--problem=binary \
--var measures= \
--inputs filelist:filelist \
--var filelist:path="$LISTPATH" \
--var filelist:lists="${filelists}" \
--var filelist:sep=',' \
--var filelist:column=0 \
--process "cycle:cycle" \
--process "filelistshuffle:shuffle(seed=$seed,memory=25000)" \
--process "input:${here}/code/load_data.py(type=spect,downmix=0,cycle=0,denoise=1,width=${net_width},seed=$seed)" \
--var input:labels="${LABELPATH}"/'*.csv',"${extralabels}" \
--var input:data="${SPECTPATH}/%(id)s.h5" \
--var input:data_vars=1k \
--process collect:collect \
--var "collect:source=0..1" \
--process "scale@1:range(out_min=0.01,out_max=0.99)" \
--layers "${net_layers}" \
--save "${model}.h5" \
${net_options} \
${cmdargs} || return $?
loss=`python -c 'import h5py,sys; print h5py.File(sys.argv[1]+".h5","r")["training"]["train_loss_epoch"][-1]' ${model}`
echo_status "Done with training model ${model}. `date`. Final loss = ${loss}."
email_status "Done with training model ${model}" "Final loss = ${loss}."
}
#############################
# define evaluation
#############################
function evaluate_model {
model="$1" # model including path
filelists="$2" # file list to use
predictions="$3" # model including path
cmdargs="${@:4}" # extra arguments
echo_status "Evaluating model ${model}."
"$here/code/simplenn_main.py" \
--mode=evaluate \
--var input:labels="${LABELPATH}"/'*.csv' \
--var input:data="${SPECTPATH}/%(id)s.h5" \
--var input:targets_needed=0 \
--var filelist:path="$LISTPATH" \
--var filelist:lists="$filelists" \
--var filelist:sep=',' \
--var filelistshuffle:bypass=1 \
--var augment:bypass=1 \
--var cycle:bypass=1 \
--load "${model}.h5" \
--save "${predictions}.h5" \
${cmdargs}
}
#####################################
# prepare file lists and spectrograms
#####################################
function stage1_prepare {
echo_status "Preparing file lists."
mkdir $LISTPATH 2> /dev/null
"$here/code/create_filelists.py" "$LABELPATH" ${TRAIN} --mode "train" --out "$LISTPATH/%(fold)s_%(num)i" || return $?
if [ "$TEST" = "" ]; then
echo_status "NOT computing file lists for test sets since no test sets were specified yet."
else
"$here/code/create_filelists.py" "$LABELPATH" ${TEST} --mode "test" --out "$LISTPATH/%(fold)s" || return $?
fi
echo_status "Computing spectrograms."
mkdir $SPECTPATH 2> /dev/null
"$here/code/prepare_spectrograms.sh" "${AUDIOPATH}" "${SPECTPATH}" ${SPEC_SR} ${SPEC_FPS} ${SPEC_FFTLEN} ${SPEC_FMIN} ${SPEC_FMAX} ${SPEC_BANDS}
echo_status "Done computing spectrograms."
email_status "Done with stage1 preparations" "Computed filelists and spectrograms."
}
#############################
# first stage training
#############################
function stage1_train {
echo_status "First training stage."
# process model and fold indices
if [ "$1" != "" -a "${1:0:1}" != '-' ]; then
# index is given as first argument
idxs="$1"
cmdargs="${@:2}"
else
idxs=`seq ${model_count}`
cmdargs="${@:1}"
fi
for i in ${idxs}; do
model="$WORKPATH/model_first_${i}"
if [ ! -f "${model}.h5" ]; then # check for existence
echo_status "Training model ${model}."
train_model "${model}" "train_${i}" '' ${i} ${cmdargs} || return $?
echo_status "Done training model ${model}."
else
echo_status "Using existing model ${model}."
fi
done
}
#############################
# first stage prediction
#############################
function stage1_predict {
if [ "$TEST" = "" ]; then
echo_status "NOT computing first stage predictions since no test sets were specified yet."
return 1
fi
echo_status "Computing first stage predictions."
cmdargs="${@:1}"
for i in `seq ${model_count}`; do
model="$WORKPATH/model_first_${i}"
prediction="${model}.prediction"
if [ ! -f "${prediction}.h5" ]; then # check for existence
evaluate_model "${model}" "test" "${prediction}" ${cmdargs} || return $?
else
echo_status "Using existing predictions ${prediction}."
fi
done
# prediction by bagging
echo_status "Bagging first stage predictions."
"$here/code/predict.py" "$WORKPATH"/model_first_?.prediction.h5 --filelist "$testfilelists" --filelist-header --out "$first_predictions" --out-header || return $?
echo_status "Done. `date`. First stage predictions are in ${first_predictions}."
email_status "Done with stage1 predictions" "First stage predictions are in ${first_predictions}."
}
#############################
# first stage validation
#############################
function stage1_validate {
echo_status "Computing first stage validations."
cmdargs="${@:1}"
for i in `seq ${model_count}`; do
model="$WORKPATH/model_first_${i}"
validation="${model}.validation"
if [ ! -f "${validation}.h5" ]; then # check for existence
evaluate_model "${model}" "val_${i}" "${validation}" ${cmdargs} #|| return $?
else
echo_status "Using existing validations ${validation}."
fi
done
first_validations="$WORKPATH/validation_first.csv"
# prediction by bagging
echo_status "Bagging first stage validations."
vallists=`echo $LISTPATH/val_?`
"$here/code/predict.py" "$WORKPATH"/model_first_?.validation.h5 --filelist ${vallists// /,} --out "$first_validations" --keep-prefix --keep-suffix --out-header --skip-missing || return $?
filelists=""
for t in ${TRAIN}; do
filelists+=" ${LABELPATH}/${t}.csv"
done
auc=`"$here/code/evaluate_auc.py" "${first_validations}" ${filelists} --splits ${vallists// /,} --gt-header --pred-header --gt-suffix='.wav'`
echo_status "Done. `date`. First stage validation AUC score is ${auc}."
email_status "Done with stage1 validations" "First stage validation AUC score is ${auc}."
}
#############################
# compute pseudo_labels
#############################
function stage2_prepare {
echo_status "Prepare second stage by analyzing first stage."
# filter list by threshold
# split into folds randomly
"$here/code/make_pseudo.py" --filelist "$first_predictions" --filelist-header --threshold=${pseudo_threshold} --folds=${pseudo_folds} --out "$LISTPATH/testdata.pseudo_%(fold)i" --out-prefix-filelists="$testfilelists" --out-suffix='.wav' || return $?
# merge each train filelist with a pseudo filelist
for i in `seq ${model_count}`; do
for h in `seq ${pseudo_folds}`; do
cat "$LISTPATH/train_${i}" "$LISTPATH/testdata.pseudo_${h}" > "$LISTPATH/train_${i}_pseudo_${h}"
done
done
echo_status "Prepared file lists for second stage."
email_status "Done with stage2 preparations" "Generated pseudo-labeled training data."
}
#############################
# second stage training
#############################
function stage2_train {
echo_status "Second training stage."
# process model and fold indices
if [ "$1" != "" -a "${1:0:1}" != '-' ]; then
# index is given as first argument
idxs="$1"
if [ "$2" != "" -a "${2:0:1}" != '-' ]; then
# index is given as second argument
folds="$2"
cmdargs="${@:3}"
else
folds=`seq ${pseudo_folds}`
cmdargs="${@:2}"
fi
else
idxs=`seq ${model_count}`
folds=`seq ${pseudo_folds}`
cmdargs="${@:1}"
fi
for i in $idxs; do
for h in $folds; do
model="$WORKPATH/model_second_${i}_${h}"
if [ ! -f "${model}.h5" ]; then # check for existence
echo_status "Training model ${model}."
train_model "${model}" "train_${i}_pseudo_${h}" "$LISTPATH/testdata.pseudo_*" ${i} ${cmdargs} || return $?
echo_status "Done training model ${model}."
else
echo_status "Using existing model ${model}."
fi
done
done
}
#############################################
# second stage prediction
# by bagging all available models
############################################
function stage2_predict {
if [ "$TEST" = "" ]; then
echo_status "NOT computing final predictions since no test sets were specified yet."
return 1
fi
echo_status "Computing final predictions."
cmdargs="${@:1}"
for i in `seq ${model_count}`; do
for h in `seq ${pseudo_folds}`; do
model="$WORKPATH/model_second_${i}_${h}"
prediction="${model}.prediction"
if [ ! -f "${prediction}.h5" ]; then # check for existence
evaluate_model "${model}" test "${prediction}" ${cmdargs} || return $?
else
echo_status "Using existing predictions ${prediction}."
fi
done
done
echo_status "Bagging final predictions."
"$here/code/predict.py" "$WORKPATH"/model_second*.prediction.h5 --filelist "$testfilelists" --filelist-header --out "$second_predictions" --out-header || return $?
"$here/code/predict.py" "$WORKPATH"/model_*.prediction.h5 --filelist "$testfilelists" --filelist-header --out "$final_predictions" --out-header || return $?
echo_status "Done. `date`. Final predictions are in ${final_predictions}."
email_status "Done with stage2 predictions" "Final predictions are in ${final_predictions}."
}
#############################
# second stage validation
#############################
function stage2_validate {
echo_status "Computing second stage validations."
cmdargs="${@:1}"
for i in `seq ${model_count}`; do
for h in `seq ${pseudo_folds}`; do
model="$WORKPATH/model_second_${i}_${h}"
validation="${model}.validation"
if [ ! -f "${validation}.h5" ]; then # check for existence
evaluate_model "${model}" "val_${i}" "${validation}" ${cmdargs} #|| return $?
else
echo_status "Using existing validations ${validation}."
fi
done
done
second_validations="$WORKPATH/validation_second.csv"
# prediction by bagging
echo_status "Bagging first stage validations."
vallists=`echo $LISTPATH/val_?`
"$here/code/predict.py" "$WORKPATH"/model_second_?_?.validation.h5 --filelist ${vallists// /,} --out "$second_validations" --keep-prefix --keep-suffix --out-header --skip-missing || return $?
filelists=""
for t in ${TRAIN}; do
filelists+=" ${LABELPATH}/${t}.csv"
done
auc=`"$here/code/evaluate_auc.py" "${second_validations}" ${filelists} --splits ${vallists// /,} --gt-header --pred-header --gt-suffix='.wav'`
echo_status "Done. `date`. Second stage validation AUC score is ${auc}."
email_status "Done with stage2 validations" "Second stage validation AUC score is ${auc}."
}
###################################################################
if [ "$1" == 'help' -o "$1" == '-help' -o "$1" == '--help' ]; then
echo_info "Proposal for the Bird audio detection challenge 2017"
echo_info "See http://machine-listening.eecs.qmul.ac.uk/bird-audio-detection-challenge"
echo_info "by Thomas Grill <[email protected]>"
echo_info ""
echo_info "Without any arguments, the full two-stage train/predict sequence is run"
echo_info "Subtasks can be run by specifying one of: stage1_prepare, stage1_train, stage1_predict, stage2_prepare, stage2_train, stage2_predict"
elif [ "$1" == "" -o "${1:0:1}" == '-' ]; then
echo_info "Running full two-stage train/predict sequence:"
cmdargs="${@:1}"
stage1_prepare ${cmdargs} && stage1_train ${cmdargs} && stage1_validate ${cmdargs} && stage1_predict ${cmdargs}
### Stage 2 deactivated for DCASE 2018 baseline - it might work, but hasn't been fully tested
# && stage2_prepare ${cmdargs} # && stage2_train ${cmdargs} && stage2_validate ${cmdargs} && stage2_predict ${cmdargs}
else
echo_info "Running sub-task ${1}:"
${@:1}
fi