-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_training_template.py
262 lines (220 loc) · 8.57 KB
/
run_training_template.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import numpy as np
from torch.utils.data import DataLoader, Dataset
import torch
import torch.nn as nn
import pandas as pd
import sklearn.model_selection
from unet.utils.load_data import CElegansDataset, RandomData
from unet.networks.unet3d import UNet3D
from unet.networks.unet3d import SingleConv
# from unet.networks.unet3d import UnetModel
import unet.augmentations.augmentations as aug
from unet.utils.loss import WeightedBCELoss, WeightedBCEDiceLoss, BCEDiceLoss
from unet.utils.trainer import RunTraining
from unet.utils.inferer import Inferer
import argparse
import unet.utils.data_utils as utils
import neptune.new as neptune
neptune_run = None
if neptune_run is None:
neptune_run = {}
parser = argparse.ArgumentParser(description="3DUnet Training")
# nargs="?" required to fall back to default if no arg provided
parser.add_argument("data", nargs="?")
parser.add_argument("--batch", nargs="?", default=4, type=int)
parser.add_argument("--epochs", nargs="?", default=10, type=int)
parser.add_argument("--workers", nargs="?", default=4, type=int)
parser.add_argument("--dummy", action="store_true") # Use dummy data
parser.add_argument("--withinference", action="store_true")
args = parser.parse_args()
params = {
"Normalize": {"per_channel": True},
"RandomContrastBrightness": {"p": 0.5},
"Flip": {"p": 0.5},
"RandomRot90": {"p": 0.5, "channel_axis": 0},
"RandomGuassianBlur": {"p": 0.5},
"RandomGaussianNoise": {"p": 0.5},
"RandomPoissonNoise": {"p": 0.5},
"ElasticDeform": {"sigma":10, "p":0.5, "channel_axis": 0, "mode":"mirror"},
"LabelsToEdges": {"connectivity": 2, "mode":"thick"},
"EdgeMaskWmap": {"edge_multiplier":2, "wmap_multiplier":1, "invert_wmap":True},
# "BlurMasks": {"sigma": 2},
"ToTensor": {},
"batch_size": args.batch,
"epochs": args.epochs,
"val_split": 0.2,
"patch_size": (24, 200, 200),
"create_wmap": True, ##
"lr": 1e-2,
"weight_decay": 1e-5,
"in_channels": 2,
"out_channels": 1,
"scheduler_factor": 0.2,
"scheduler_patience": 20,
"scheduler_mode": "min",
"loss_function": WeightedBCEDiceLoss,
# "loss_function": BCEDiceLoss,
# "targets": [["image"], ["mask"]]
"targets": [["image"], ["mask"], ["weight_map"]]
}
neptune_run["parameters"] = params
train_transforms = [
aug.Normalize(**params["Normalize"]),
aug.RandomContrastBrightness(**params["RandomContrastBrightness"]),
aug.Flip(**params["Flip"]),
aug.RandomRot90(**params["RandomRot90"]),
aug.RandomGuassianBlur(**params["RandomGuassianBlur"]),
aug.RandomGaussianNoise(**params["RandomGaussianNoise"]),
aug.RandomPoissonNoise(**params["RandomPoissonNoise"]),
aug.ElasticDeform(**params["ElasticDeform"]),
aug.LabelsToEdges(**params["LabelsToEdges"]),
aug.EdgeMaskWmap(**params["EdgeMaskWmap"]),
# aug.BlurMasks(**params["BlurMasks"]),
aug.ToTensor()
]
val_transforms = [
aug.Normalize(**params["Normalize"]),
aug.LabelsToEdges(**params["LabelsToEdges"]),
aug.EdgeMaskWmap(**params["EdgeMaskWmap"]),
# aug.BlurMasks(**params["BlurMasks"]),
aug.ToTensor()
]
def main():
main_worker(args)
def main_worker(args):
if args.dummy:
print("----- Using dummy data ------")
train_ds = RandomData(
data_shape=(1, 1, *params["patch_size"]),
dataset_size=20,
num_classes=1,
train_val="train"
)
val_ds = RandomData(
data_shape=(1, 1, *params["patch_size"]),
dataset_size=5,
num_classes=1,
train_val="val"
)
else:
load_csv = pd.read_csv(args.data)
# Create the dataset (patches and weight maps, if required)
utils.create_patch_dataset(load_csv, patch_size=params["patch_size"], create_wmap=params["create_wmap"])
training_data = pd.read_csv("training_data.csv")
train_dataset, val_dataset = sklearn.model_selection.train_test_split(
training_data, test_size=params["val_split"]
)
print(
f"loading data from: {args.data}. Train data of length {train_dataset.shape[0]} and val data of length {val_dataset.shape[0]}"
)
train_ds = CElegansDataset(data_csv=train_dataset, transforms=train_transforms, targets=params["targets"], train_val="train")
val_ds = CElegansDataset(data_csv=val_dataset, transforms=val_transforms, targets=params["targets"], train_val="val")
if torch.cuda.is_available():
# Find fastest conv
torch.backends.cudnn.benchmark = True
device = torch.device("cuda")
else:
device = torch.device("cpu")
train_loader = DataLoader(
train_ds,
batch_size=args.batch,
shuffle=True,
pin_memory=True if device == "cuda" else False,
num_workers=args.workers,
)
# Don't shuffle validation so you can see how predictions improve over time
val_loader = DataLoader(
val_ds,
batch_size=args.batch,
shuffle=False,
pin_memory=True if device == "cuda" else False,
num_workers=args.workers,
)
data_loader = {"train": train_loader, "val": val_loader}
model = UNet3D(
in_channels=params["in_channels"], out_channels=1, f_maps=32
)
# model = utils.load_weights(
# model,
# weights_path="../3DUnet_confocal_boundary-best_checkpoint.pytorch",
# device="cpu", # Load to CPU and convert to GPU later
# dict_key="model_state_dict"
# )
model = utils.load_weights(
model,
weights_path="../best_checkpoint_exp_044.pytorch",
device="cpu", # Load to CPU and convert to GPU later
dict_key="state_dict"
)
model = utils.set_parameter_requires_grad(model, trainable=True)
model.encoders[0].basic_module.SingleConv1 = SingleConv(params["in_channels"], 16)
# Replace final sigmoid
model.final_activation = nn.Identity()
params_to_update = utils.find_parameter_requires_grad(model)
# Different CUDA, different pytorch handling
try:
if torch._C._cuda_getDeviceCount() > 1:
print("Running on multiple GPUs")
model = torch.nn.DataParallel(model)
except:
if torch.cuda.device_count() > 1:
print("Running on multiple GPUs")
model = torch.nn.DataParallel(model)
model.to(device)
## Requries more setup: https://pytorch.org/docs/master/notes/ddp.html#example
# Avoid the slowing of for loops due to the interpreters GIL.
# Will spin up independent interpreters, rather than multithreading,
# as in `DataParallel` case
# model = torch.nn.parallel.DistributedDataParallel(model)
loss_function = params["loss_function"]()
# optimizer = torch.optim.Adam(model.parameters(), 1e-4, weight_decay=1e-5)
optimizer = torch.optim.Adam(params_to_update, lr=params["lr"], weight_decay=params["weight_decay"])
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, mode=params["scheduler_mode"], factor=params["scheduler_factor"], patience=params["scheduler_patience"]
)
trainer = RunTraining(
model,
device,
data_loader,
loss_function,
optimizer,
scheduler,
num_epochs=params["epochs"],
neptune_run=None
)
# Run training/validation
trainer.fit()
if args.withinference:
# Run inference pipeline
load_data_train_no_lab = pd.read_csv("data/data_test_stacked_channels.csv")
load_data_test = pd.read_csv("data/data_stacked_channels_training.csv")
load_data_test = load_data_test[load_data_test["train"] == False]
load_data = pd.concat([load_data_train_no_lab, load_data_test])
load_data.reset_index(inplace=True, drop=True)
model = UNet3D(
in_channels=params["in_channels"], out_channels=params["out_channels"], f_maps=32
)
try:
model = utils.load_weights(
model,
weights_path="best_checkpoint.pytorch",
device="cpu", # Load to CPU and convert to GPU later
dict_key="state_dict"
)
except:
model = utils.load_weights(
model,
weights_path="../best_checkpoint.pytorch",
device="cpu", # Load to CPU and convert to GPU later
dict_key="state_dict"
)
model.to("cuda")
infer = Inferer(
model=model,
patch_size=params["patch_size"],
neptune_run=None
)
infer.predict_from_csv(load_data)
# neptune_run.stop()
if __name__ == "__main__":
main()