-
Notifications
You must be signed in to change notification settings - Fork 0
/
capture_screen_keys.py
74 lines (60 loc) · 1.78 KB
/
capture_screen_keys.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import numpy as np
from grabscreen import grab_screen
import cv2
import time
from getkeys import key_check
import os
def keys_to_output(keys):
'''
Convert keys to a ...multi-hot... array
[A,W,D,S] boolean values.
'''
output = [0,0,0,0]
if 'A' in keys:
output[0] = 1
if 'D' in keys:
output[2] = 1
if 'S' in keys:
output[3] = 1
else:
output[1] = 1
return output
file_name = 'training_data_sample.npy'
if os.path.isfile(file_name):
print('File exists, loading previous data!')
training_data = list(np.load(file_name,allow_pickle=True))
else:
print('File does not exist, starting fresh!')
training_data = []
def main():
for i in list(range(4))[::-1]:
print(i+1)
time.sleep(1)
paused = False
while(True):
if not paused:
# 800x600 windowed mode
screen = grab_screen(region=(64,102,825,733))
last_time = time.time()
screen = cv2.cvtColor(screen, cv2.COLOR_BGR2GRAY)
screen = cv2.resize(screen, (160,120))
# resize to something a bit more acceptable for a CNN
keys = key_check()
output = keys_to_output(keys)
training_data.append([screen,output])
if len(training_data) % 100 == 0:
print(len(training_data))
np.save(file_name,training_data)
keys = key_check()
if 'T' in keys:
if paused:
paused = False
print('unpaused!')
time.sleep(1)
else:
print('Pausing!')
np.save('training_data_sample.npy',training_data)
print("Saved")
paused = True
time.sleep(1)
main()