-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfer.py
72 lines (62 loc) · 2.74 KB
/
fer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
''' Fer2013 Dataset class'''
from __future__ import print_function
from PIL import Image
import numpy as np
import h5py
import torch.utils.data as data
class FER2013(data.Dataset):
"""`FER2013 Dataset.
Args:
train (bool, optional): If True, creates dataset from training set, otherwise
creates from test set.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
"""
def __init__(self, split='Training', transform=None):
self.transform = transform
self.split = split # training set or test set
self.data = h5py.File('./data/data.h5', 'r', driver='core')
# now load the picked numpy arrays
if self.split == 'Training':
self.train_data = self.data['Training_pixel']
self.train_labels = self.data['Training_label']
self.train_data = np.asarray(self.train_data)
self.train_data = self.train_data.reshape((28709, 48, 48))
elif self.split == 'PublicTest':
self.PublicTest_data = self.data['PublicTest_pixel']
self.PublicTest_labels = self.data['PublicTest_label']
self.PublicTest_data = np.asarray(self.PublicTest_data)
self.PublicTest_data = self.PublicTest_data.reshape((3589, 48, 48))
else:
self.PrivateTest_data = self.data['PrivateTest_pixel']
self.PrivateTest_labels = self.data['PrivateTest_label']
self.PrivateTest_data = np.asarray(self.PrivateTest_data)
self.PrivateTest_data = self.PrivateTest_data.reshape((3589, 48, 48))
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is index of the target class.
"""
if self.split == 'Training':
img, target = self.train_data[index], self.train_labels[index]
elif self.split == 'PublicTest':
img, target = self.PublicTest_data[index], self.PublicTest_labels[index]
else:
img, target = self.PrivateTest_data[index], self.PrivateTest_labels[index]
# doing this so that it is consistent with all other datasets
# to return a PIL Image
img = img[:, :, np.newaxis]
img = np.concatenate((img, img, img), axis=2)
img = Image.fromarray(img)
if self.transform is not None:
img = self.transform(img)
return img, target
def __len__(self):
if self.split == 'Training':
return len(self.train_data)
elif self.split == 'PublicTest':
return len(self.PublicTest_data)
else:
return len(self.PrivateTest_data)