-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTransfer_learning.py
145 lines (82 loc) · 3.53 KB
/
Transfer_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#!/usr/bin/env python
# coding: utf-8
# In[9]:
import pandas as pd
import numpy as np
import tensorflow
from tensorflow.keras import optimizers, losses, activations, models, Model
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, LearningRateScheduler, ReduceLROnPlateau
from tensorflow.keras.layers import Dense, Input, Dropout, GRU, concatenate, Add, Activation
from tensorflow.keras.models import load_model
from sklearn.utils.class_weight import compute_class_weight
from sklearn.metrics import f1_score, accuracy_score, roc_auc_score, precision_recall_curve, auc, confusion_matrix
from sklearn.model_selection import train_test_split
# In[3]:
df_1 = pd.read_csv("data/ptbdb_normal.csv", header=None)
df_2 = pd.read_csv("data/ptbdb_abnormal.csv", header=None)
df = pd.concat([df_1, df_2])
df_train, df_test = train_test_split(df, test_size=0.2, random_state=1337, stratify=df[187])
Y = np.array(df_train[187].values).astype(np.int8)
X = np.array(df_train[list(range(187))].values)[..., np.newaxis]
Y_test = np.array(df_test[187].values).astype(np.int8)
X_test = np.array(df_test[list(range(187))].values)[..., np.newaxis]
# In[92]:
base_model = load_model("rnn/rnn_mitbih.h5")
# ### Remove dense layers and freeze remaining layers
# In[95]:
cropped_model = Model(base_model.input, base_model.layers[2].output)
for i in range(1, 4):
print(cropped_model.layers[i])
cropped_model.layers[i].trainable = False
# In[96]:
cropped_model.summary()
# In[97]:
seq_len = 187
def get_model():
n_class = 1
x = cropped_model.output
dense = Dense(64, activation='relu')(x)
dense = Dropout(0.2)(dense)
output = Dense(n_class, activation='sigmoid')(dense)
opt = tensorflow.keras.optimizers.Adam(lr=0.001)
full_model = models.Model(inputs=cropped_model.input, outputs=output)
class_weights = compute_class_weight('balanced', [0, 1], Y)
full_model.compile(
loss='binary_crossentropy',
optimizer=opt,
metrics=['accuracy']
)
full_model.summary()
return full_model
# In[98]:
full_model = get_model()
early = EarlyStopping(monitor="val_accuracy", mode="max", patience=5, verbose=1)
redonplat = ReduceLROnPlateau(monitor="val_accuracy", mode="max", patience=3, verbose=2)
callbacks_list = [early, redonplat] # early
full_model.fit(X, Y, epochs=1000, verbose=1, callbacks=callbacks_list, validation_split=0.1)
# ### Unfreeze layers and continue training
# In[ ]:
for i in range(1, 4):
print(full_model.layers[i])
full_model.layers[i].trainable = True
# In[ ]:
file_path = "rnn_transfer.h5"
checkpoint = ModelCheckpoint(file_path, monitor='val_accuracy', verbose=1, save_best_only=True, mode='max')
early = EarlyStopping(monitor="val_accuracy", mode="max", patience=5, verbose=1)
redonplat = ReduceLROnPlateau(monitor="val_accuracy", mode="max", patience=3, verbose=2)
callbacks_list = [checkpoint, early, redonplat] # early
full_model.fit(X, Y, epochs=1000, verbose=1, callbacks=callbacks_list, validation_split=0.1)
full_model.load_weights(file_path)
# In[32]:
pred_test = full_model.predict(X_test)
pred_test = (pred_test>0.5).astype(np.int8)
f1 = f1_score(Y_test, pred_test)
print("Test f1 score : %s "% f1)
acc = accuracy_score(Y_test, pred_test)
print("Test accuracy score : %s "% acc)
auc_roc = roc_auc_score(Y_test, pred_test)
print("AUROC score : %s "% auc_roc)
precision, recall, _ = precision_recall_curve(Y_test, pred_test)
auc_prc = auc(recall, precision)
print("AUPRC score : %s "% auc_prc)
print(confusion_matrix(Y_test, pred_test))