forked from vsmolyakov/ml_algo_in_depth
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmh_gauss2d.py
91 lines (75 loc) · 3.08 KB
/
mh_gauss2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import uniform
from scipy.stats import multivariate_normal
np.random.seed(42)
class mh_gauss:
def __init__(self, dim, K, num_samples, target_mu, target_sigma, target_pi, proposal_mu, proposal_sigma):
#target params: p(x) = \sum_k pi(k) N(x; mu_k,Sigma_k)
self.dim = dim
self.K = K
self.num_samples = num_samples
self.target_mu = target_mu
self.target_sigma = target_sigma
self.target_pi = target_pi
#proposal params: q(x) = N(x; mu, Sigma)
self.proposal_mu = proposal_mu
self.proposal_sigma = proposal_sigma
#sample chain params
self.n_accept = 0
self.alpha = np.zeros(self.num_samples)
self.mh_samples = np.zeros((self.num_samples, self.dim))
def target_pdf(self, x):
#p(x) = \sum_k pi(k) N(x; mu_k,Sigma_k)
prob = 0
for k in range(self.K):
prob += self.target_pi[k]*\
multivariate_normal.pdf(x,self.target_mu[:,k],self.target_sigma[:,:,k])
#end for
return prob
def proposal_pdf(self, x):
#q(x) = N(x; mu, Sigma)
return multivariate_normal.pdf(x, self.proposal_mu, self.proposal_sigma)
def sample(self):
#draw init sample from proposal
#import pdb; pdb.set_trace()
x_init = multivariate_normal.rvs(self.proposal_mu, self.proposal_sigma, 1)
self.mh_samples[0,:] = x_init
for i in range(self.num_samples-1):
x_curr = self.mh_samples[i,:]
x_new = multivariate_normal.rvs(x_curr, self.proposal_sigma, 1)
#MH ratio
self.alpha[i] = self.proposal_pdf(x_new) / self.proposal_pdf(x_curr) #q(x|x')/q(x'|x)
self.alpha[i] = self.alpha[i] * (self.target_pdf(x_new)/self.target_pdf(x_curr)) #alpha x p(x')/p(x)
#MH acceptance probability
r = min(1, self.alpha[i])
u = uniform.rvs(loc=0, scale=1, size=1)
if (u <= r):
self.n_accept += 1
self.mh_samples[i+1,:] = x_new #accept
else:
self.mh_samples[i+1,:] = x_curr #reject
#end for
print("MH acceptance ratio: ", self.n_accept/float(self.num_samples))
if __name__ == "__main__":
dim = 2
K = 2
num_samples = 5000
target_mu = np.zeros((dim,K))
target_mu[:,0] = [4,0]
target_mu[:,1] = [-4,0]
target_sigma = np.zeros((dim, dim, K))
target_sigma[:,:,0] = [[2,1],[1,1]]
target_sigma[:,:,1] = [[1,0],[0,1]]
target_pi = np.array([0.4, 0.6])
proposal_mu = np.zeros((dim,1)).flatten()
proposal_sigma = 10*np.eye(dim)
mhg = mh_gauss(dim, K, num_samples, target_mu, target_sigma, target_pi, proposal_mu, proposal_sigma)
mhg.sample()
plt.figure()
plt.scatter(mhg.mh_samples[:,0], mhg.mh_samples[:,1], label='MH samples')
plt.grid(True); plt.legend()
plt.title("Metropolis-Hastings Sampling of 2D Gaussian Mixture")
plt.xlabel("X1"); plt.ylabel("X2")
#plt.savefig("./figures/mh_gauss2d.png")
plt.show()