diff --git a/theories/Decidability/Execution.v b/theories/Decidability/Execution.v index f6f99bfa..022c843a 100644 --- a/theories/Decidability/Execution.v +++ b/theories/Decidability/Execution.v @@ -68,7 +68,7 @@ Qed. Check ((fun x => nat_rec (fun _ => nat) 0 (fun _ ih => S (S ih)) x) : nat -> nat). -Goal ⟪ε |- λ ℕ, indℕ ℕ 0 (λ ℕ, λ ℕ, x₀.+2) 2 : ℕ → ℕ⟫. +Goal ⟪ε |- λ ℕ, indℕ ℕ 0 (λ ℕ ℕ, x₀.+2) 2 : ℕ → ℕ⟫. Proof. infer_auto. Qed. @@ -76,7 +76,7 @@ Qed. Check (eq_refl : (nat_rect (fun _ => Type) nat (fun _ ih => nat -> ih) 3) = (nat -> nat -> nat -> nat)). Goal ⟪ ε |- rfl □ (ℕ → ℕ → ℕ → ℕ) : - (ℕ → ℕ → ℕ → ℕ) =⟨ □ ⟩ indℕ □ ℕ (λ ℕ, λ □, ℕ → x₀) 3⟫. + (ℕ → ℕ → ℕ → ℕ) =⟨ □ ⟩ indℕ □ ℕ (λ ℕ □, ℕ → x₀) 3⟫. Proof. check_auto. Qed. \ No newline at end of file diff --git a/theories/TermNotations.v b/theories/TermNotations.v index 5a3b632d..4d751a66 100644 --- a/theories/TermNotations.v +++ b/theories/TermNotations.v @@ -32,10 +32,16 @@ Notation "'x₉'" := (tRel 9) (in custom mltt at level 0). Notation "'□'" := U (in custom mltt at level 0). (* Π fragment *) -Notation "'Π' A , B" := (tProd A B) (in custom mltt at level 2, right associativity). +(* Notation "'Π' A , B" := (tProd A B) (in custom mltt at level 2, right associativity). *) +Notation "'Π' x .. y , p" := (tProd x ( .. (tProd y p) ..)) + (in custom mltt at level 2, x, y at level 0, right associativity, + format "'[' 'Π' '/ ' x .. y , '/ ' p ']'"). Notation "A '→' B" := (tProd A B⟨↑⟩) (in custom mltt at level 2, right associativity). Notation "f x" := (tApp f x) (in custom mltt at level 1, left associativity). -Notation "'λ' A , t" := (tLambda A t) (in custom mltt at level 2, right associativity). +(* Notation "'λ' A , t" := (tLambda A t) (in custom mltt at level 2, right associativity). *) +Notation "'λ' x .. y , p" := (tLambda x ( .. (tLambda y p) ..)) + (in custom mltt at level 2, x, y at level 0, right associativity, + format "'[' 'λ' '/ ' x .. y , '/ ' p ']'"). (* Nat fragment *) Notation "'ℕ'" := tNat (in custom mltt at level 0). @@ -54,7 +60,10 @@ Notation "4" := ⟪tm 0.+4⟫ (in custom mltt at level 0). Notation "5" := ⟪tm 0.+5⟫ (in custom mltt at level 0). (* Σ fragment *) -Notation "'∑' A , B" := (tSig A B) (in custom mltt at level 2, right associativity). +Notation "'∑' x .. y , p" := (tSig x ( .. (tSig y p) ..)) + (in custom mltt at level 2, x, y at level 0, right associativity, + format "'[' '∑' '/ ' x .. y , '/ ' p ']'"). +(* Notation "'∑' A , B" := (tSig A B) (in custom mltt at level 2, right associativity). *) Notation "A '×' B" := (tSig A B⟨↑⟩) (in custom mltt at level 2). Notation "( x : A ; y : B )" := (tPair A B x y) (in custom mltt at level 0, x, A, y, B at level 2). Notation "x '.1'" := (tFst x) (in custom mltt at level 1).