-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtiffix.py
223 lines (186 loc) · 7.73 KB
/
tiffix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#!/usr/bin/python
"""
TODO: fix metadata so that it can be read out in ImageJ.
Currently Tifffile can read it but not ImageJ.
TODO: d1.mean() * d0/d1 is arbitrary, which possibly causes an issue if saved in uint16.
TODO: collect more shading correction reference.
"""
import numpy as np
from scipy.ndimage import imread
from os.path import join
from glob import glob
import ast
import sys
import os
from os.path import join, dirname, abspath
import tifffile as tiff
from tifffile import TiffFile
try:
from urllib.request import urlretrieve
except:
from urllib import urlretrieve
import tempfile
import shutil
import re
import json
import multiprocessing
import math
ch_table = {('FITC', 'FITC'): 'FITC',
('mCherry', 'mCherry'): 'CHERRY',
('CFP', 'CFP'): 'CFP',
('YFP', 'YFP'): 'YFP',
('DAPI', 'DAPI'): 'DAPI',
('TRITC', 'TRITC'): 'TRITC',
('Far-Red', 'Far-Red'): 'FAR-RED',
('Orange', 'Orange'): 'ORANGE',
('Hoechst', 'DAPI'): 'AMCA',
('CFP', 'YFP'): 'FRETCFPYFP'}
reffile = dict(np.load(join(dirname(abspath(__file__)), 'data/ref.npz')))
darkreffile = dict(np.load(join(dirname(abspath(__file__)), 'data/darkref.npz')))
def retrieve_ff_ref(refpath, darkrefpath):
"""
refpath: 'http://archive.simtk.org/ktrprotocol/temp/ffref_20x3bin.npz'
darkrefpath: 'http://archive.simtk.org/ktrprotocol/temp/ffdarkref_20x3bin.npz'
"""
try:
temp_dir = tempfile.mkdtemp()
urlretrieve(refpath, join(temp_dir, 'ref.npz'))
ref = np.load(join(temp_dir, 'ref.npz'))
urlretrieve(darkrefpath, join(temp_dir, 'darkref.npz'))
darkref = np.load(join(temp_dir, 'darkref.npz'))
finally:
shutil.rmtree(temp_dir) # delete directory
return ref, darkref
def correct_shade(img, ref, darkref):
img = img.astype(np.float)
d0 = img.astype(np.float) - darkref
d1 = ref
return d1.mean() * d0/d1
def run_correct_shade(tif, md, reffile, darkreffile, imgpath):
info = ast.literal_eval(md['Info'])
try:
binning = int(info['Neo-Binning']['PropVal'][0])
magnification = int(re.search("([0-9]*)x.*", info['TINosePiece-Label']['PropVal']).groups(0)[0])
exposure = int(info['Exposure-ms'])
emission_label = info['Emission Filter-Label']['PropVal']
excitation_label = info['Excitation Filter-Label']['PropVal']
except:
binning = int(info['Neo-Binning'][0])
magnification = int(re.search("([0-9]*)x.*", info['TINosePiece-Label']).groups(0)[0])
exposure = int(info['Exposure-ms'])
emission_label = info['Emission Filter-Label']
excitation_label = info['Excitation Filter-Label']
try:
emission_label = re.search(r"\(([A-Za-z0-9_-]+)\)", emission_label).groups(0)[0]
excitation_label = re.search(r"\(([A-Za-z0-9_-]+)\)", excitation_label).groups(0)[0]
ch = ch_table[excitation_label, emission_label]
except:
if (emission_label == '8-Open') and (excitation_label == '8-Open'):
try:
turret_label = info['Filter Turret-Label']['PropVal']
except:
turret_label = info['Filter Turret-Label']
if turret_label == '6-mOrange':
ch = 'ORANGE'
else:
emission_label, excitation_label = None, None
else:
emission_label, excitation_label = None, None
img_sc = tif.asarray()
if emission_label is not None:
try:
ref = reffile['{0}x_{1}bin_{2}'.format(magnification, binning, ch)]
darkref = darkreffile['{0}x_{1}bin_{2}'.format(magnification, binning, ch)]
img_sc = correct_shade(img_sc, ref, darkref)
img_sc[img_sc < 0] = 0
img_sc[img_sc > 65535] = 65535
md['tk_info'] = info
md['postprocess'] = 'shading_correction'
except:
with open('missing_channel.txt', 'a') as f:
f.write('{0}:{1}:{2}x:{3}x{3} - {4} \n'.format(excitation_label, emission_label, magnification, binning, imgpath))
else:
with open('missing_channel.txt', 'a') as f:
f.write('{0}:{1}:{2}x:{3}x{3} - {4} \n'.format(excitation_label, emission_label, magnification, binning, imgpath))
return img_sc.astype(np.uint16), md
def run_correct_shade_v2(tif, md, reffile, darkreffile, imgpath):
info = ast.literal_eval(md['Info'])
binning = int(info['Binning'])
magnification = int(re.search("([0-9]*)x.*", info['TINosePiece-Label']).groups()[0])
exposure = int(info['Exposure-ms'])
emission_label = info['Wheel-B-Label']
excitation_label = info['Wheel-A-Label']
try:
emission_label = re.search(r"\(([A-Za-z0-9_-]+)\)", emission_label).groups(0)[0]
excitation_label = re.search(r"\(([A-Za-z0-9_-]+)\)", excitation_label).groups(0)[0]
ch = ch_table[excitation_label, emission_label]
except:
if (emission_label == '8-Open') and (excitation_label == '8-Open'):
if info['TILightPath-Label'] == '6-mOrange' or info['TIFilterBlock1-Label'] == '6-mOrange':
ch = 'ORANGE'
else:
emission_label, excitation_label = None, None
else:
emission_label, excitation_label = None, None
img_sc = tif.asarray()
if emission_label is not None:
try:
ref = reffile['{0}x_{1}bin_{2}'.format(magnification, binning, ch)]
darkref = darkreffile['{0}x_{1}bin_{2}'.format(magnification, binning, ch)]
img_sc = correct_shade(img_sc, ref, darkref)
img_sc[img_sc < 0] = 0
img_sc[img_sc > 65535] = 65535
md['tk_info'] = info
md['postprocess'] = 'shading_correction'
except:
with open('missing_channel.txt', 'a') as f:
f.write('{0}:{1}:{2}x:{3}x{3} - {4} \n'.format(excitation_label, emission_label, magnification, binning, imgpath))
else:
with open('missing_channel.txt', 'a') as f:
f.write('{0}:{1}:{2}x:{3}x{3} - {4} \n'.format(excitation_label, emission_label, magnification, binning, imgpath))
return img_sc.astype(np.uint16), md
def call_process(imgpath, reffile, darkreffile):
with TiffFile(imgpath) as tif:
md = tif.imagej_metadata
img_sc = tif.asarray()
if "Info" in md:
img_sc, md = run_correct_shade(tif, md, reffile, darkreffile, imgpath)
elif 'postprocess' in md:
if md['postprocess'] == 'shading_correction':
return
tiff.imsave(imgpath, img_sc, imagej=True,
metadata=md, compress=9)
def _main(imgpath_list):
r0 = reffile.copy()
r1 = darkreffile.copy()
for imgpath in imgpath_list:
try:
call_process(imgpath, r0, r1)
except IOError:
with open('corrupted.txt', 'a') as f:
f.write(imgpath+'\n')
except:
with open('error.txt', 'a') as f:
f.write(imgpath+'\n')
def chunks(l, n):
"""Yield successive n-sized chunks from l."""
for i in range(0, len(l), n):
yield l[i:i + n]
if __name__ == "__main__":
tiffile = sys.argv[1] # NOTE: assume full path e.g. /scratch/blah/blah/blah/image.tif
with open(tiffile) as f:
content = f.readlines()
content = [x.strip() for x in content]
import time
start = time.time()
num_cores = 7
if len(content) > num_cores:
split_lists = list(chunks(content, int(math.ceil(len(content)/num_cores))))
pool = multiprocessing.Pool(num_cores, maxtasksperchild=1)
pool.map(_main, split_lists, chunksize=1)
pool.close()
else:
_main(content)
end = time.time()
print end - start, len(content)
#_main(split_lists[1])