-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtiffix_folder.py
109 lines (89 loc) · 3.75 KB
/
tiffix_folder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
from __future__ import division
from tiffix import _main, chunks, run_correct_shade, run_correct_shade_v2
from os.path import join
import os
import sys
import multiprocessing
import math
import numpy as np
from os.path import join, dirname, abspath
import argparse
from tifffile import TiffFile
import tifffile as tiff
reffile = dict(np.load(join(dirname(abspath(__file__)), 'data/ref.npz')))
darkreffile = dict(np.load(join(dirname(abspath(__file__)), 'data/darkref.npz')))
def call_process(imgpath, reffile, darkreffile):
with TiffFile(imgpath) as tif:
md = tif.imagej_metadata
img_sc = tif.asarray()
if "Info" in md:
try:
img_sc, md = run_correct_shade(tif, md, reffile, darkreffile, imgpath)
except:
img_sc, md = run_correct_shade_v2(tif, md, reffile, darkreffile, imgpath)
return img_sc, md
elif 'postprocess' in md:
if md['postprocess'] == 'shading_correction':
with open('skipped.txt', 'a') as f:
f.write(imgpath + '\n')
return img_sc, md
def _gen_outputdir(parentfolder, outputfolder, dirname):
sfol_name = dirname.split(parentfolder)[-1]
sfol_name = sfol_name if not sfol_name.startswith('/') else sfol_name[1:]
outputdir = join(outputfolder, sfol_name)
return outputdir
def _fix(set_arg):
r0 = reffile.copy()
r1 = darkreffile.copy()
for (parentfolder, outputfolder, dirname, imgpath) in set_arg:
outputdir = _gen_outputdir(parentfolder, outputfolder, dirname)
try:
img, md = call_process(join(dirname, imgpath), r0, r1)
if 'postprocess' in md:
tiff.imsave(join(outputdir, imgpath), img.astype(np.uint16),
imagej=True, metadata=md, compress=9)
else:
pass # no shading correction done, so don't save image. Should be saved in missing_channel.txt
except IOError:
with open('corrupted.txt', 'a') as f:
f.write(join(dirname, imgpath) + '\n')
except:
with open('error.txt', 'a') as f:
f.write(join(dirname, imgpath) + '\n')
def call_tiffix(inputfolder, outputfolder, binning=3, magnification=20, num_cores=1):
"""
Covert lab specific.
Not to be called by preprocess_operation. Use it in separate from a pipeline.
"""
if outputfolder is None:
outputfolder = inputfolder
content = []
for dirname, subdirlist, filelist in os.walk(inputfolder):
for i in filelist:
if i.endswith('.tif'):
content.append((inputfolder, outputfolder, dirname, i))
outputdir = _gen_outputdir(inputfolder, outputfolder, dirname)
if not os.path.exists(outputdir):
os.makedirs(outputdir)
print "{0} tif files found...".format(len(content))
print "processing with {0} cores".format(num_cores)
if (len(content) > num_cores) and (num_cores > 1):
split_lists = list(chunks(content, int(math.ceil(len(content)/num_cores))))
pool = multiprocessing.Pool(num_cores, maxtasksperchild=1)
pool.map(_fix, split_lists, chunksize=1)
pool.close()
else:
_fix(content)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("-n", "--cores", help="number of cores for multiprocessing",
type=int, default=1)
parser.add_argument("-o", "--output", help="output folder",
type=str, default=None)
parser.add_argument("input", nargs="*", help="input folder")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
inputfolder = args.input[0]
call_tiffix(inputfolder, args.output, num_cores=args.cores)