-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimages.py
226 lines (188 loc) · 8.56 KB
/
images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import random
from typing import List, Tuple
from collections import Counter
def round_pixels(image_values: List[List[List[int]]]) -> List[List[Tuple[int]]]:
"""Takes in a representation of image values, rounds the pixels to nearest number divisible
by 5 and then returns the new representation with tuples instead of lists
Parameters
----------
image_values : List[List[List[int]]]
A representation of values of an image where the list contains
rows of pixels of 3 RGB values i.e. a 2x2 image would be [[[255,255,255],[0,0,0]],[[0,0,0],[255,255,255]]]
Returns
-------
List[List[Tuple[int]]]
A representation of values of an image where the list contains
rows of pixels of 3 RGB values. The innermost dimension is converted to
Examples
--------
```
image_values = [
[[101,125,0],[255,115,83],[96,17,25],[255,255,255],[255,255,255]],
[[255,255,255], [0,0,0],[0,0,0],[0,0,0], [255,255,255]],
]
round_pixels(image_values)
# Resulting list
# [
# [(105, 125, 0), (255, 115, 85), (100, 20, 25), (255, 255, 255), (255, 255, 255)],
# [(255, 255, 255), (0, 0, 0), (0, 0, 0), (0, 0, 0), (255, 255, 255)]
# ]
```
"""
for row in image_values:
for pixel in row:
for index, value in enumerate(pixel):
if value % 5 == 0: # Value is divisible by 5
continue
else:
if len(str(value)) ==3: # 3 digit number
if int(str(value)[-1]) > 5:
pixel[index] = int(f"{str(value)[0]}{int(str(value)[1])+1}0")
else:
pixel[index]= int(f"{str(value)[0]}{str(value)[1]}5")
elif len(str(value)) ==2: # 2 digit number
if int(str(value)[-1]) > 5:
pixel[index] = int(f"{int(str(value)[0])+1}0")
else:
pixel[index]= int(f"{str(value)[0]}5")
elif len(str(value)) ==1: # single digit number
if value > 5:
pixel[index] = 10
else:
pixel[index] = 0
# Convert lists to tuples since lists can't be used with Counter
image_values = [[tuple(pixel) for pixel in row] for row in image_values]
return image_values
def compress_image(image_values: List[List[List[int]]]) -> Tuple[List[List[Tuple[int]]], List[Tuple[int]]]:
"""Compresses images using the following algorithm:
1. Round each number up to the next multiple of 5 (except 255, which stays 255).
So if we had the tuple `(120, 253, 119)` we would get `(125, 255, 120)` and if we
had `(255, 0, 1)` we would get `(255, 5, 5)`
2. Count the occurence of each tupple and make a list mapping each tuple to an index
3. Replace each tupple with the index of where it would appear in the list of occurences
Parameters
----------
image_values : List[List[List[int]]]
The initial representation of the image to be compressed
Returns
-------
List[List[Tuple[int]]], List[Tuple[int]]
The first argument is the compressed result, the second is the list used to compress the result
Raises
------
ValueError
If there are more than 10 billion unique pixels
Examples
--------
```
image_values = [
[[101,125,0],[255,115,83],[96,17,25],[255,255,255],[255,255,255]],
[[255,255,255], [0,0,0],[0,0,0],[0,0,0], [255,255,255]],
]
result, compression_mapping = compress_image(image_values)
print(f"{result=} | {compression_mapping=}")
# result=[[(0,), (1,), (2,), (3,), (3,)], [(3,), (4,), (4,), (4,), (3,)]] | compression_mapping=[(105, 125, 0), (255, 115, 85), (100, 20, 25), (255, 255, 255), (0, 0, 0)]
```
"""
# 1. "Round" pixel values to nearest multiple of 5
image_values = round_pixels(image_values)
# 2. Count tuple occurances
counter = Counter()
for row in image_values:
for pixel in row:
counter[pixel] += 1
# 2.1 Convert to dictionary to make it easier to work with
terms = dict(counter)
## 2.2 Make a list of the terms
common_pixels = list(terms.keys())
## 2.3 Raise an error if the compression would result in larger files
if len(common_pixels) > 10_000_000_000:
raise ValueError("Image has too many unique values to be compressed")
# 3. Replace occurences of tuples with their index in the list of common pixels
result = image_values
for index, row in enumerate(result):
for inner_list_index, pixel in enumerate(row):
result[index][inner_list_index] = tuple([common_pixels.index(pixel) if pixel in common_pixels else pixel])
return result, common_pixels
def decompress_image(image_values:List[List[Tuple[int]]], common_pixels:List[Tuple[int]]) -> List[List[Tuple[int]]]:
"""Takes in an image compressed using the algorithm in compress_image(), and it's mapping and decompresses it
Parameters
----------
image_values : List[List[Tuple[int]]]
The compressed representation of the image
common_pixels : List[Tuple[int]]
The list used to compress the image values
Returns
-------
List[List[Tuple[int]]]
The decompressed version of the image
Examples
--------
```
image_values = [
[[101,125,0],[255,115,83],[96,17,25],[255,255,255],[255,255,255]],
[[255,255,255], [0,0,0],[0,0,0],[0,0,0], [255,255,255]],
]
result, common_pixels = compress_image(image_values)
print(decompress_image(result, common_pixels))
# [
# [((105, 125, 0),), ((255, 115, 85),), ((100, 20, 25),), ((255, 255, 255),), ((255, 255, 255),)],
# [((255, 255, 255),), ((0, 0, 0),), ((0, 0, 0),), ((0, 0, 0),), ((255, 255, 255),)]
# ]
```
"""
# Takes in a compressed image, and the mapping used to compress it, and decompresses back to original form
result = image_values
for index, row in enumerate(result):
for j_index, pixel in enumerate(row):
if len(pixel) == 1: # Was compressed, convert back to original value
result[index][j_index] = tuple([common_pixels[pixel[0]]])
return result
def create_test_data(width:int, height:int) -> List[List[List[int]]]:
"""Generates test data to be used with compress_image()
Parameters
----------
width : int
The width of the "image" to generate
height : int
The height of the "image" to generate
Returns
-------
List[List[List[int]]]
An "image" of size width x height
"""
result = []
for row in range(width):
current_row = []
for column in range(height):
current_row.append([random.randint(0,255), random.randint(0,255), random.randint(0,255)])
result.append(current_row)
return result
if __name__ == "__main__": # Testing, only runs when file is run
# Run with example in readme
image_values = [
# Start with third dimension being a list so the values can be rounded (tuples are immutable)
[[255,255,255],[255,255,255],[255,255,255],[255,255,255],[255,255,255]],
[[255,255,255], [0,0,0],[0,0,0],[0,0,0], [255,255,255]],
[[255,255,255],[255,255,255],[0,0,0],[255,255,255],[255,255,255]],
[[255,255,255],[255,255,255],[0,0,0],[255,255,255],[255,255,255]],
[[255,255,255],[255,255,255],[0,0,0],[255,255,255],[255,255,255]],
]
print(f"Original Length of text = {len(str(image_values))}")
result, common_pixels = compress_image(image_values)
print(f"Length of compressed text = {len(str(result))}")
print(f"Compression ratio is ~%{((len(str(result))/len(str(image_values))))*100}")
# Run with 50x50 randomly generated image
image_values = create_test_data(50,50)
print(f"Original Length of text = {len(str(image_values))}")
result, common_pixels = compress_image(image_values)
print(f"Length of compressed text = {len(str(result))}")
print(f"Compression ratio is ~%{((len(str(result))/len(str(image_values))))*100}")
print(decompress_image(result, common_pixels))
# Run with example from docstrings
image_values = [
[[101,125,0],[255,115,83],[96,17,25],[255,255,255],[255,255,255]],
[[255,255,255], [0,0,0],[0,0,0],[0,0,0], [255,255,255]],
]
# result, compression_mapping = compress_image(image_values)
# print(f"{result=}\n{compression_mapping=}")