-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVolFrac_3D.py
414 lines (309 loc) · 20.1 KB
/
VolFrac_3D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
# -*- coding: utf-8 -*-
"""
Created on Wed Sep 23 15:42:02 2015
@author: Nicholas Roberts
"""
import numpy as np
import copy
from collections import OrderedDict
# Uncomment if using matplotlib & pyplot
#import matplotlib.pyplot as plt
#from mpl_toolkits.mplot3d import Axes3D
# Abaqus imports, comment out if not running in Abaqus
from part import *
from material import *
from section import *
from assembly import *
from step import *
from interaction import *
from load import *
from mesh import *
from optimization import *
from job import *
from sketch import *
from visualization import *
from connectorBehavior import *
# FreeCAD imports, comment out if not running FreeCAD
#import Part, FreeCAD, math, copy
#from FreeCAD import Base
class VolumeFill():
def __init__(self, dims, diameters, isSphere=False):
self.depth = len(diameters)
self.diameters = diameters
self.dims = dims
self.majorRadius = np.max(dims)/2.0
self.isSphere = isSphere
self.allCentroids = []
self.allCoordinates = []
self.tree = self.treeSetUp()
def treeSetUp(self):
'''Set tree's initial structure
For each level in treeArray
[[node number, full, leaf, parent, [children], coordinates, [centroid]], [node number, full, leaf, parent, [children], coordinates, [centroid]], ...]'''
# Create root level & node
leaf = False
numChildren = (self.dims[0] * self.dims[1] * self.dims[2])/self.diameters[0]**3
children = [(kids) for kids in range(numChildren)]
rootCoords = np.array([[0, 0, 0], [0, self.dims[0], 0], [self.dims[0], 0, 0], [self.dims[0], self.dims[1], 0], [0, 0, self.dims[2]], [0, self.dims[1], self.dims[2]], [self.dims[0], 0, self.dims[2]], [self.dims[0], self.dims[1], self.dims[2]]])
xCentroid = np.sum(rootCoords[:,0])/8.0
yCentroid = np.sum(rootCoords[:,1])/8.0
zCentroid = np.sum(rootCoords[:,2])/8.0
rootCentroid = [xCentroid, yCentroid, zCentroid]
rootNode = [0, False, copy.copy(leaf), None, copy.copy(children), rootCoords, rootCentroid]
treeArray = []
treeArray.append(rootNode)
self.allCoordinates.append(rootCoords)
self.allCentroids.append(rootCentroid)
# Create level 1 nodes
level = []
levelCentroids, levelCoordinates = self.coordGenerator(1, self.dims, [0,0,0])
self.allCentroids.append(copy.copy(levelCentroids))
self.allCoordinates.append(levelCoordinates)
for child in treeArray[0][4]:
if self.depth == 1:
leaf = True
childNode = [child, False, leaf, 0, [], levelCoordinates[child], levelCentroids[child]]
level.append(copy.deepcopy(childNode))
treeArray.append(copy.deepcopy(level))
# Create other level nodes
for treeLevel in range(1, self.depth):
level = []
childCount = 0
for cInx, child in enumerate(treeArray[treeLevel]):
if treeLevel == self.depth - 1:
leaf = True
childDims = [int(np.max(child[5][:,0])-np.min(child[5][:,0])), int(np.max(child[5][:,1])-np.min(child[5][:,1])), int(np.max(child[5][:,2])-np.min(child[5][:,2]))]
childOffset = [int(np.min(child[5][:,0])), int(np.min(child[5][:,1])), int(np.min(child[5][:,2]))]
childCentroids, childCoords = self.coordGenerator(treeLevel+1, childDims, childOffset)
for childCell in zip(childCoords, childCentroids):
distanceFromCentre = self.euclidean(rootCentroid, childCell[1])
if self.isSphere and distanceFromCentre > self.majorRadius and treeLevel == self.depth - 1:
full = True
else:
full = False
childNode = [childCount, full, leaf, child[0], [], childCell[0], childCell[1]]
level.append(copy.deepcopy(childNode))
treeArray[treeLevel][cInx][4].append(childCount)
childCount += 1
# print treeLevel, childCount
treeArray.append(copy.deepcopy(level))
return treeArray
def coordGenerator(self, level, dims, offset):
'''Generate the coordinates for the vertices of every child cell within a cell'''
# Generate 2D mesh intervals
levelCoords = np.array([(x+offset[0], y+offset[1]) for x in range(0, dims[0]+1, self.diameters[level-1]) for y in range(0, dims[1]+1, self.diameters[level-1])])
gap = int(np.sqrt(len(levelCoords)))
intervals = np.array([(temp) for temp in range(0, len(levelCoords)-gap, gap)])
# Generate 2D mesh
cells2Dsimplices = []
for idx in intervals:
tempSimp = np.reshape(np.array([levelCoords[idx:idx+2,:], levelCoords[idx+gap:idx+gap+2,:]]), (4, 2))
cells2Dsimplices.append(copy.deepcopy(tempSimp))
for jdx in range(1, len(intervals)):
tempSimp[:,1] += self.diameters[level-1]
cells2Dsimplices.append(copy.deepcopy(tempSimp))
cells2Dsimplices = np.array(cells2Dsimplices)
# Generate 3D mesh
cubes = OrderedDict()
cellCentroids = []
cCount = 0
for cell in cells2Dsimplices:
for z in range(0, dims[2], self.diameters[level-1]):
keyName = 'cell ' + str(cCount)
singleCell = np.reshape(np.array([np.c_[cell, z*np.ones(len(cell))+offset[2]], np.c_[cell, (z+self.diameters[level-1])*np.ones(len(cell))+offset[2]]]), (8, 3))
# Calculate centroids
centroid = [np.sum(singleCell[:,0])/8.0, np.sum(singleCell[:,1])/8.0, np.sum(singleCell[:,2])/8.0]
cellCentroids.append(copy.copy(centroid))
cubes[keyName] = singleCell
cCount += 1
cellCoordinates = np.array(cubes.values())
cubes.clear()
return cellCentroids, cellCoordinates
def fill(self, level, node):
'''Fill node and all branches of that node'''
if level == 0:
return 'Root node cannot be filled.'
self.tree[level][node][1] = True
# Recursive fill
if self.tree[level][node][2]:
return
else:
children = self.tree[level][node][4]
for child in children:
self.tree[level+1][child][1] = True
self.fill(level+1, child)
def isFull(self, level, node):
'''Is the node or any of its branches full
[node number, full, leaf, parent, [children], coordinates, [centroid]]'''
# Recursive search
if self.tree[level][node][1]: # if full
return True
else:
if not self.tree[level][node][2]: # if not a leaf
children = self.tree[level][node][4]
for child in children:
# print level+1, child
full = self.isFull(level+1, child)
if full:
return True
def children(self, level, node):
'''Node's children'''
if level == 0:
return self.tree[level][4]
return self.tree[level][node][4]
def parent(self, level, node):
'''Node's parent'''
if level == 0:
return 'Root node has no parent.'
return [level-1, self.tree[level][node][3]]
def euclidean(self, x, y):
'''Calculates Euclidean distance between 2 points'''
x = np.array(x)
y = np.array(y)
return np.linalg.norm(x-y)
# Uncomment if using matplotlib & pyplot
# def plotCell(self, level, node, col='r', mark='o'):
# '''Plot node corners'''
#
# ax.scatter(self.tree[level][node][5][:,0], self.tree[level][node][5][:,1], self.tree[level][node][5][:,2], c=col, marker=mark)
# Set up spheres in Abaqus, comment out if not running in Abaqus
def createAndPlaceSphere(diameter, centroid, sph):
'''Creates & meshes spheres in the volume'''
sphName = 'Sphere-' + str(sph)
setName = 'SphereSet-' + str(sph)
#rad = 0.1 + np.random.randint(10) * 0.1
cent = diameter / 2.0
mdb.models['Model-1'].ConstrainedSketch(name='__profile__', sheetSize=5.0)
mdb.models['Model-1'].sketches['__profile__'].ConstructionLine(point1=(0.0, -2.5), point2=(0.0, 2.5))
mdb.models['Model-1'].sketches['__profile__'].FixedConstraint(entity=mdb.models['Model-1'].sketches['__profile__'].geometry[2])
mdb.models['Model-1'].sketches['__profile__'].ArcByCenterEnds(center=(0.0, 0.0), point1=(0.0, -cent), point2=(0.0, cent)) # direction=COUNTERCLOCKWISE,
#print cent, rad
mdb.models['Model-1'].Part(dimensionality=THREE_D, name=sphName, type=DISCRETE_RIGID_SURFACE)
mdb.models['Model-1'].parts[sphName].BaseShellRevolve(angle=360.0, flipRevolveDirection=OFF, sketch=mdb.models['Model-1'].sketches['__profile__'])
del mdb.models['Model-1'].sketches['__profile__']
# Mesh spheres
mdb.models['Model-1'].parts[sphName].setMeshControls(elemShape=QUAD, regions=mdb.models['Model-1'].parts[sphName].faces.getSequenceFromMask(('[#1 ]', ), ))
mdb.models['Model-1'].parts[sphName].seedPart(deviationFactor=0.1, minSizeFactor=0.1, size=0.33)
mdb.models['Model-1'].parts[sphName].generateMesh()
# Create set
mdb.models['Model-1'].parts[sphName].Set(faces=mdb.models['Model-1'].parts[sphName].faces.getSequenceFromMask(('[#1 ]', ), ), name=setName)
# Reference points & inertia
intName = 'Inertia-' + str(sph)
refPointName = 'RP-' + str(sph)
mdb.models['Model-1'].parts[sphName].ReferencePoint(point=(0.0, 0.0, 0.0))
mdb.models['Model-1'].parts[sphName].Set(name=refPointName, referencePoints=(mdb.models['Model-1'].parts[sphName].referencePoints[5], ))
volume = 0.75*np.pi*cent**3
density = 2.33e-09
mass = density / volume
momInertia = (2.0/3.0)*mass*cent**3
mdb.models['Model-1'].parts[sphName].engineeringFeatures.PointMassInertia(alpha=0.0, composite=0.0, i11=momInertia, i22=momInertia, i33=momInertia, mass=momInertia, name=intName, region=mdb.models['Model-1'].parts[sphName].sets[refPointName])
mdb.models['Model-1'].rootAssembly.Instance(dependent=ON, name=sphName, part=mdb.models['Model-1'].parts[sphName])
xTrans = centroid[0]
yTrans = centroid[1]
zTrans = centroid[2]
# mdb.models['Model-1'].rootAssembly.instances[sphName].translate(vector=(xTrans, yTrans, zTrans))
mdb.models['Model-1'].rootAssembly.translate(instanceList=(sphName, ), vector=(xTrans, yTrans, zTrans))
def createAndCutSphere(diameter, centroid, sph):
# Create sphere
sphName = 'Sphere-' + str(sph) # Sphere thath is to be removed from root sphere
radius = diameter/2.0
mdb.models['Model-1'].ConstrainedSketch(name='__profile__', sheetSize=100.0)
mdb.models['Model-1'].sketches['__profile__'].ConstructionLine(point1=(0.0, -50.0), point2=(0.0, 50.0))
mdb.models['Model-1'].sketches['__profile__'].FixedConstraint(entity=mdb.models['Model-1'].sketches['__profile__'].geometry[2])
mdb.models['Model-1'].sketches['__profile__'].Line(point1=(0.0, radius), point2=(0.0, -radius))
mdb.models['Model-1'].sketches['__profile__'].VerticalConstraint(addUndoState=False, entity=mdb.models['Model-1'].sketches['__profile__'].geometry[3])
mdb.models['Model-1'].sketches['__profile__'].ParallelConstraint(addUndoState=False, entity1=mdb.models['Model-1'].sketches['__profile__'].geometry[2], entity2=mdb.models['Model-1'].sketches['__profile__'].geometry[3])
mdb.models['Model-1'].sketches['__profile__'].CoincidentConstraint(addUndoState=False, entity1=mdb.models['Model-1'].sketches['__profile__'].vertices[0], entity2=mdb.models['Model-1'].sketches['__profile__'].geometry[2])
mdb.models['Model-1'].sketches['__profile__'].CoincidentConstraint(addUndoState=False, entity1=mdb.models['Model-1'].sketches['__profile__'].vertices[1], entity2=mdb.models['Model-1'].sketches['__profile__'].geometry[2])
mdb.models['Model-1'].sketches['__profile__'].ArcByCenterEnds(center=(0.0, 0.0), direction=CLOCKWISE, point1=(0.0, radius), point2=(0.0, -radius))
mdb.models['Model-1'].sketches['__profile__'].CoincidentConstraint(addUndoState=False, entity1=mdb.models['Model-1'].sketches['__profile__'].vertices[2], entity2=mdb.models['Model-1'].sketches['__profile__'].geometry[3])
mdb.models['Model-1'].sketches['__profile__'].EqualDistanceConstraint(addUndoState=False, entity1=mdb.models['Model-1'].sketches['__profile__'].vertices[0], entity2=mdb.models['Model-1'].sketches['__profile__'].vertices[1], midpoint=mdb.models['Model-1'].sketches['__profile__'].vertices[2])
mdb.models['Model-1'].Part(dimensionality=THREE_D, name=sphName, type=DEFORMABLE_BODY)
mdb.models['Model-1'].parts[sphName].BaseSolidRevolve(angle=360.0, flipRevolveDirection=OFF, sketch=mdb.models['Model-1'].sketches['__profile__'])
# Place sphere to be cut instance
mdb.models['Model-1'].rootAssembly.Instance(dependent=ON, name=sphName, part=mdb.models['Model-1'].parts[sphName])
xTrans = centroid[0]
yTrans = centroid[1]
zTrans = centroid[2]
mdb.models['Model-1'].rootAssembly.translate(instanceList=(sphName, ), vector=(xTrans, yTrans, zTrans))
def rootSphere(diam,dim, numberOfSpheres):
rootName = 'rootSphere'
radius = diam / 2.0
mdb.models['Model-1'].ConstrainedSketch(name='__profile__', sheetSize=100.0)
mdb.models['Model-1'].sketches['__profile__'].ConstructionLine(point1=(0.0, -50.0), point2=(0.0, 50.0))
mdb.models['Model-1'].sketches['__profile__'].FixedConstraint(entity=mdb.models['Model-1'].sketches['__profile__'].geometry[2])
mdb.models['Model-1'].sketches['__profile__'].Line(point1=(0.0, radius), point2=(0.0, -radius))
mdb.models['Model-1'].sketches['__profile__'].VerticalConstraint(addUndoState=False, entity=mdb.models['Model-1'].sketches['__profile__'].geometry[3])
mdb.models['Model-1'].sketches['__profile__'].ParallelConstraint(addUndoState=False, entity1=mdb.models['Model-1'].sketches['__profile__'].geometry[2], entity2=mdb.models['Model-1'].sketches['__profile__'].geometry[3])
mdb.models['Model-1'].sketches['__profile__'].CoincidentConstraint(addUndoState=False, entity1=mdb.models['Model-1'].sketches['__profile__'].vertices[0], entity2=mdb.models['Model-1'].sketches['__profile__'].geometry[2])
mdb.models['Model-1'].sketches['__profile__'].CoincidentConstraint(addUndoState=False, entity1=mdb.models['Model-1'].sketches['__profile__'].vertices[1], entity2=mdb.models['Model-1'].sketches['__profile__'].geometry[2])
mdb.models['Model-1'].sketches['__profile__'].ArcByCenterEnds(center=(0.0, 0.0), direction=CLOCKWISE, point1=(0.0, radius), point2=(0.0, -radius))
mdb.models['Model-1'].sketches['__profile__'].CoincidentConstraint(addUndoState=False, entity1=mdb.models['Model-1'].sketches['__profile__'].vertices[2], entity2=mdb.models['Model-1'].sketches['__profile__'].geometry[3])
mdb.models['Model-1'].sketches['__profile__'].EqualDistanceConstraint(addUndoState=False, entity1=mdb.models['Model-1'].sketches['__profile__'].vertices[0], entity2=mdb.models['Model-1'].sketches['__profile__'].vertices[1], midpoint=mdb.models['Model-1'].sketches['__profile__'].vertices[2])
mdb.models['Model-1'].Part(dimensionality=THREE_D, name=sphName, type=DEFORMABLE_BODY)
mdb.models['Model-1'].parts[sphName].BaseSolidRevolve(angle=360.0, flipRevolveDirection=OFF, sketch=mdb.models['Model-1'].sketches['__profile__'])
# Add & cut instance
mdb.models['Model-1'].rootAssembly.Instance(dependent=ON, name=sphName, part=mdb.models['Model-1'].parts[sphName])
xTrans = dim [0]/ 2.0
yTrans = dim [1]/ 2.0
zTrans = dim [2]/ 2.0
mdb.models['Model-1'].rootAssembly.translate(instanceList=(sphName, ), vector=(xTrans, yTrans, zTrans))
# Cut operation - this will only work if script is created then run
cutList = ''
for sphNum in xrange(1, numberOfSpheres+1):
cutList = cutList + 'mdb.models[\'Model-1\'].rootAssembly.instances[\'Sphere-' + str(sphNum) + '\'], '
mdb.models['Model-1'].rootAssembly.InstanceFromBooleanCut(cuttingInstances=(mdb.models['Model-1'].rootAssembly.instances[sphName], ), instanceToBeCut=mdb.models['Model-1'].rootAssembly.instances[rootSphere], name=newRoot, originalInstances=DELETE)
#####################################
# #
# Change these paramters as needed #
# #
#####################################
dimensions = np.array([32, 32, 32]) # Global volume dimensions (does not have to be a cube)
diameters = np.array([8, 2, 1]) # Increasing the number of diameters increases the set up time & memory usage
volumeFraction = 0.4 # Target volume fraction, the higher this value the longer the execution, if too high it may never be attainable!
isSphere = False # If this flag is set to 'True' then fill space is treated as spherical & global dimensions need to represent a cube
# If set to 'False' then the global dimensions give the shape of the volume
sponge = False # Create negative space if set 'True'
myVol = VolumeFill(dimensions, diameters, isSphere) # This creates the tree structure that represents the volume
# Uncomment if using matplotlib & pyplot
#fig = plt.figure()
#ax = fig.add_subplot(111, projection='3d')
#ax.set_xlabel('X axis')
#ax.set_ylabel('Y axis')
#ax.set_zlabel('Z axis')
# Populate space
if isSphere:
volume = (4.0/3.0) * np.pi * (np.max(dimensions)/2.0)**3
else:
volume = dimensions[0]*dimensions[1]*dimensions[2]
fillCount = 0
sphVolume = 0
rootCentre = dimensions[0] / 2.0
# For FreeCAD
#doc = FreeCAD.newDocument("Sponge")
#rootSphere = Part.makeSphere(dimensions[0] / 2.0)
#rootTrans = Base.Vector(rootCentre, rootCentre, rootCentre)
#rootSphere.translate(rootTrans)
while (sphVolume/volume) < volumeFraction:
chosenLevel = np.random.randint(1, len(diameters)+1)
chosenNode = np.random.randint(0, len(myVol.tree[chosenLevel]))
if myVol.isFull(chosenLevel, chosenNode) == None:
fillCount += 1
myVol.fill(chosenLevel, chosenNode)
# Comment out if not using Abaqus
if sponge:
createAndCutSphere(diameters[chosenLevel-1], myVol.tree[chosenLevel][chosenNode][6], fillCount) # Un/comment for Abaqus
sphere = Part.makeSphere((diameters[chosenLevel-1] + 0.5)/2.0)
spongeCut = Base.Vector(myVol.tree[chosenLevel][chosenNode][6][0], myVol.tree[chosenLevel][chosenNode][6][1], myVol.tree[chosenLevel][chosenNode][6][2])
sphere.translate(spongeCut)
rootSphere = rootSphere.cut(sphere)
else:
createAndPlaceSphere(diameters[chosenLevel-1], myVol.tree[chosenLevel][chosenNode][6], fillCount) # Un/comment for Abaqus
sphVolume += (4.0/3.0)*np.pi*(diameters[chosenLevel-1]/2.0)**3
print('Volume fraction:', sphVolume/volume)
#if sponge:
# rootSphere(dimensions[0], dimensions, fillCount)
#Part.show(rootSphere)
# __objs__=[]
# __objs__.append(FreeCAD.getDocument("Sponge").getObject("rootSphere"))
# Part.export(__objs__,u"C:/Users/User/Documents/FreeCAD scripts/Sponge_1.iges")