-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfed_ppnet.py
534 lines (444 loc) · 28.9 KB
/
fed_ppnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
import torch
from Protopnet import ProtoPNet
from utils import *
from train_or_test import *
from push_prot_chex import *
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class Fed_PPNet():
def __init__(self, model, clients, train_loaders, train_push_loaders, test_loaders, prot_shape, numEpoch, warmEpoch, push_start, num_round,
model_dir, prototype_img_filename_prefix, prototype_self_act_filename_prefix, proto_bound_boxes_filename_prefix, root_dir_for_saving_prototypes, joint_optimizer_lrs,
joint_lr_step_size, warm_optimizer_lrs, last_layer_optimizer_lr):
model = model.to(device) # server's model
self.model = torch.nn.DataParallel(model)
self.clients = clients
self.train_loaders = train_loaders
self.train_push_loaders = train_push_loaders
self.test_loaders = test_loaders
self.numEpoch = numEpoch # number of local training epochs per communication round
self.warmEpoch = warmEpoch # number of local warm epochs
self.push_start = push_start
self.num_round = num_round
self.prot_shape = prot_shape
# initialize lists to store clients' models and optimizers
self.name_models = list()
self.name_joint_optim = list()
self.name_warm_optim = list()
self.name_last_layer_optim = list()
# set names to save prototypes
self.model_dir = model_dir
self.prototype_img_filename_prefix = prototype_img_filename_prefix
self.prototype_self_act_filename_prefix = prototype_self_act_filename_prefix
self.proto_bound_boxes_filename_prefix = proto_bound_boxes_filename_prefix
self.root_dir_for_saving_prototypes = root_dir_for_saving_prototypes
self.prototype_activation_function = 'log'
self.joint_optimizer_lrs = joint_optimizer_lrs
self.joint_lr_step_size = joint_lr_step_size
self.warm_optimizer_lrs = warm_optimizer_lrs
self.last_layer_optimizer_lr = last_layer_optimizer_lr
# create dictionaries to keep the info about the clients' models
def model_dict_PPNet(self, in_model_dict = None):
if in_model_dict is None:
model_dict = dict()
else:
model_dict = self.create_dict(in_model_dict)
joint_optimizer_dict= dict()
warm_optimizer_dict= dict()
last_layer_optimizer_dict= dict()
for i in range(self.clients):
model_name ="model"+str(i)
if in_model_dict is None:
model_info = ProtoPNet.construct_PPNet(base_architecture='densenet121',
pretrained=True,
img_size=224,
prot_shape=self.prot_shape,
num_classes=2,
prototype_activation_function='log',
add_on_layers_type = 'regular')
model_dict.update({model_name : model_info })
else:
model_info = model_dict[model_name]
joint_optimizer_name="joint_optimizer"+str(i)
joint_optimizer_specs = \
[{'params': model_info.features.parameters(), 'lr': self.joint_optimizer_lrs['features'], 'weight_decay': 1e-3}, # bias are now also being regularized
{'params': model_info.add_on_layers.parameters(), 'lr': self.joint_optimizer_lrs['add_on_layers'], 'weight_decay': 1e-3},
{'params': model_info.prototype_vectors, 'lr': self.joint_optimizer_lrs['prototype_vectors']},
]
joint_optimizer = torch.optim.Adam(joint_optimizer_specs)
joint_optimizer_dict.update({joint_optimizer_name : joint_optimizer})
warm_optimizer_name="warm_optimizer"+str(i)
warm_optimizer_specs = \
[{'params': model_info.add_on_layers.parameters(), 'lr': self.warm_optimizer_lrs['add_on_layers'], 'weight_decay': 1e-3},
{'params': model_info.prototype_vectors, 'lr': self.warm_optimizer_lrs['prototype_vectors']},
]
warm_optimizer = torch.optim.Adam(warm_optimizer_specs)
warm_optimizer_dict.update({warm_optimizer_name: warm_optimizer})
last_layer_optimizer_name="last_layer_optimizer"+str(i)
last_layer_optimizer_specs = [{'params': model_info.last_layer.parameters(), 'lr': self.last_layer_optimizer_lr}]
last_layer_optimizer = torch.optim.Adam(last_layer_optimizer_specs)
last_layer_optimizer_dict.update({last_layer_optimizer_name: last_layer_optimizer})
return model_dict, joint_optimizer_dict, warm_optimizer_dict, last_layer_optimizer_dict
'''Averaging the parameters''' #######################################################################################################
# average prototype vectors over the clients
def get_avg_param_prot_vectors(self, model_dict):
prot_mean_w = torch.zeros(size = model_dict[self.name_models[0]].prototype_vectors.shape).to(device)
with torch.no_grad():
for i in range(self.clients):
prot_mean_w += model_dict[self.name_models[i]].prototype_vectors.data.clone().to(device)
prot_mean_w = prot_mean_w / self.clients
return prot_mean_w
# average last layer weights over the clients
def get_avg_param_last_layer(self, model_dict):
last_mean_w = torch.zeros(size = model_dict[self.name_models[0]].last_layer.weight.shape).to(device)
with torch.no_grad():
for i in range(self.clients):
last_mean_w += model_dict[self.name_models[i]].last_layer.weight.data.clone().to(device)
last_mean_w = last_mean_w / self.clients
return last_mean_w
# average the weights and biases of added conv layers over the clients
def get_avg_param_added_layers(self, model_dict):
conv1_mean_w = torch.zeros(size = model_dict[self.name_models[0]].add_on_layers[0].weight.shape).to(device)
conv1_mean_b = torch.zeros(size = model_dict[self.name_models[0]].add_on_layers[0].bias.shape).to(device)
conv2_mean_w = torch.zeros(size = model_dict[self.name_models[0]].add_on_layers[2].weight.shape).to(device)
conv2_mean_b = torch.zeros(size = model_dict[self.name_models[0]].add_on_layers[2].bias.shape).to(device)
with torch.no_grad():
for i in range(self.clients):
conv1_mean_w += model_dict[self.name_models[i]].add_on_layers[0].weight.data.clone().to(device)
conv1_mean_b += model_dict[self.name_models[i]].add_on_layers[0].bias.data.clone().to(device)
conv2_mean_w += model_dict[self.name_models[i]].add_on_layers[2].weight.data.clone().to(device)
conv2_mean_b += model_dict[self.name_models[i]].add_on_layers[2].bias.data.clone().to(device)
conv1_mean_w = conv1_mean_w / self.clients
conv1_mean_b = conv1_mean_b / self.clients
conv2_mean_w = conv2_mean_w / self.clients
conv2_mean_b = conv2_mean_b / self.clients
return conv1_mean_w, conv1_mean_b, conv2_mean_w, conv2_mean_b
# average the weights and biases of conv layers over the clients
def get_avg_param_features(self, model_dict):
params = []
for param in model_dict[self.name_models[0]].features.features.parameters():
size = torch.zeros(size = param.shape).to(device)
params.append(size)
with torch.no_grad():
all_param = []
for i in range(self.clients):
client_param = []
for param in model_dict[self.name_models[i]].features.features.parameters():
client_param.append(param)
all_param.append(client_param)
for i in all_param:
for j in range(len(params)):
params[j] += i[j].data.clone().to(device)
for j in range(len(params)):
params[j] = params[j] / self.clients
return params
# average the running mean and var of norm layers over the clients
def get_avg_param_norm(self, model_dict):
layers = []
for name, mod in model_dict[self.name_models[0]].features.features.named_modules():
if name.split('.')[-1] == 'norm':
layers.append(torch.zeros(size = mod.running_mean.shape).to(device))
layers.append(torch.zeros(size = mod.running_var.shape).to(device))
if name.split('.')[-1] == 'norm0':
layers.append(torch.zeros(size = mod.running_mean.shape).to(device))
layers.append(torch.zeros(size = mod.running_var.shape).to(device))
if name.split('.')[-1] == 'norm1':
layers.append(torch.zeros(size = mod.running_mean.shape).to(device))
layers.append(torch.zeros(size = mod.running_var.shape).to(device))
if name.split('.')[-1] == 'norm2':
layers.append(torch.zeros(size = mod.running_mean.shape).to(device))
layers.append(torch.zeros(size = mod.running_var.shape).to(device))
if name.split('.')[-1] == 'norm5':
layers.append(torch.zeros(size = mod.running_mean.shape).to(device))
layers.append(torch.zeros(size = mod.running_var.shape).to(device))
with torch.no_grad():
all_param = []
for i in range(self.clients):
client_layers = []
for name, mod in model_dict[self.name_models[i]].features.features.named_modules():
if name.split('.')[-1] == 'norm':
client_layers.append(mod.running_mean)
client_layers.append(mod.running_var)
if name.split('.')[-1] == 'norm0':
client_layers.append(mod.running_mean)
client_layers.append(mod.running_var)
if name.split('.')[-1] == 'norm1':
client_layers.append(mod.running_mean)
client_layers.append(mod.running_var)
if name.split('.')[-1] == 'norm2':
client_layers.append(mod.running_mean)
client_layers.append(mod.running_var)
if name.split('.')[-1] == 'norm5':
client_layers.append(mod.running_mean)
client_layers.append(mod.running_var)
all_param.append(client_layers)
for i in all_param:
for j in range(len(layers)):
layers[j] += i[j].data.clone().to(device)
for j in range(len(layers)):
layers[j] = layers[j] / self.clients
return layers
'''Updating the global model's parameters''' #######################################################################################################
# update server's prototype vectors
def update_main_model_param_prot_vectors (self, model_dict):
prot_mean_w = self.get_avg_param_prot_vectors(model_dict)
with torch.no_grad():
self.model.module.prototype_vectors.data = prot_mean_w.data.clone()
return self.model
# update serever's last layer weights
def update_main_model_param_last_layer (self, model_dict):
last_mean_w = self.get_avg_param_last_layer(model_dict)
with torch.no_grad():
self.model.module.last_layer.weight.data = last_mean_w.data.clone()
return self.model
# update server's weights and biases of the added conv layers
def update_main_model_param_added_layers (self, model_dict):
conv1_mean_w, conv1_mean_b, conv2_mean_w, conv2_mean_b = self.get_avg_param_added_layers(model_dict)
with torch.no_grad():
self.model.module.add_on_layers[0].weight.data = conv1_mean_w.data.clone()
self.model.module.add_on_layers[0].bias.data = conv1_mean_b.data.clone()
self.model.module.add_on_layers[2].weight.data = conv2_mean_w.data.clone()
self.model.module.add_on_layers[2].bias.data = conv2_mean_b.data.clone()
return self.model
# update serever's weights and biases of the conv layers
def update_main_model_param_features (self, model_dict):
params = self.get_avg_param_features(model_dict)
with torch.no_grad():
for num, param in enumerate(self.model.module.features.features.parameters()):
param.data = params[num].data.clone()
return self.model
# update serever's running means and vars
def update_main_model_param_norm (self, model_dict):
layers = self.get_avg_param_norm(model_dict)
with torch.no_grad():
num=0
for name, mod in self.model.module.features.features.named_modules():
if name.split('.')[-1] == 'norm':
mod.running_mean.data = layers[num].data.clone()
num += 1
mod.running_var.data = layers[num].data.clone()
num += 1
if name.split('.')[-1] == 'norm0':
mod.running_mean.data = layers[num].data.clone()
num += 1
mod.running_var.data = layers[num].data.clone()
num += 1
if name.split('.')[-1] == 'norm1':
mod.running_mean.data = layers[num].data.clone()
num += 1
mod.running_var.data = layers[num].data.clone()
num += 1
if name.split('.')[-1] == 'norm2':
mod.running_mean.data = layers[num].data.clone()
num += 1
mod.running_var.data = layers[num].data.clone()
num += 1
if name.split('.')[-1] == 'norm5':
mod.running_mean.data = layers[num].data.clone()
num += 1
mod.running_var.data = layers[num].data.clone()
num += 1
return self.model
'''Sending updated parameters to clients''' #######################################################################################################
# send (updated) last layer parameters and prototypes to clients
def send_main_model_to_clients(self, model_dict):
with torch.no_grad():
for i in range(self.clients):
model_dict[self.name_models[i]].last_layer.weight.data = self.model.module.last_layer.weight.data.clone()
model_dict[self.name_models[i]].prototype_vectors.data = self.model.module.prototype_vectors.data.clone()
return model_dict
# send (updated) model.add_on_layers to clients
def send_main_model_added_layers_to_clients(self, model_dict):
with torch.no_grad():
for i in range(self.clients):
model_dict[self.name_models[i]].add_on_layers[0].weight.data = self.model.module.add_on_layers[0].weight.data.clone()
model_dict[self.name_models[i]].add_on_layers[0].bias.data = self.model.module.add_on_layers[0].bias.data.clone()
model_dict[self.name_models[i]].add_on_layers[2].weight.data = self.model.module.add_on_layers[2].weight.data.clone()
model_dict[self.name_models[i]].add_on_layers[2].bias.data = self.model.module.add_on_layers[2].bias.data.clone()
return model_dict
# send (updated) model conv layers parameters to clients
def send_main_model_features_to_clients(self, model_dict):
with torch.no_grad():
for i in range(self.clients):
for param1, param2 in zip(model_dict[self.name_models[i]].features.features.parameters(), self.model.module.features.features.parameters()):
param1.data = param2.data.clone()
return model_dict
# send (updated) model means and vars to clients
def send_main_model_norm_to_clients(self, model_dict):
with torch.no_grad():
for i in range(self.clients):
for (name1, mod1), (name2, mod2) in zip(model_dict[self.name_models[i]].features.features.named_modules(), self.model.module.features.features.named_modules()):
if name1.split('.')[-1] == 'norm':
mod1.running_mean.data = mod2.running_mean.data.clone()
mod1.running_var.data = mod2.running_var.data.clone()
if name1.split('.')[-1] == 'norm0':
mod1.running_mean.data = mod2.running_mean.data.clone()
mod1.running_var.data = mod2.running_var.data.clone()
if name1.split('.')[-1] == 'norm1':
mod1.running_mean.data = mod2.running_mean.data.clone()
mod1.running_var.data = mod2.running_var.data.clone()
if name1.split('.')[-1] == 'norm2':
mod1.running_mean.data = mod2.running_mean.data.clone()
mod1.running_var.data = mod2.running_var.data.clone()
if name1.split('.')[-1] == 'norm5':
mod1.running_mean.data = mod2.running_mean.data.clone()
mod1.running_var.data = mod2.running_var.data.clone()
return model_dict
'''Training functions''' #######################################################################################################
def client_train_warm (self, model_dict, warm_optimizer_dict):
for i in range(self.clients):
train_data = self.train_loaders[i]
test_data = self.test_loaders[i]
ppnet = model_dict[self.name_models[i]].to(device)
model_client = torch.nn.DataParallel(ppnet)
warm_optimizer_client = warm_optimizer_dict[self.name_warm_optim[i]]
print("Client", i)
for epoch in range(self.warmEpoch):
mode(model_client, warm=True)
model_client.train()
train_accuracy, loss = train_or_test(model_client, train_data, warm_optimizer_client, class_specific=True)
model_client.eval()
test_accuracy, loss_te = train_or_test(model_client, test_data, class_specific=True)
if epoch == self.warmEpoch - 1:
print("Epoch: {:3.0f}".format(epoch+1) + " | train accuracy: {:7.5f}".format(train_accuracy) + " | test accuracy: {:7.5f}".format(test_accuracy))
def client_train_joint (self, model_dict, joint_optimizer_dict, round):
for i in range(self.clients):
train_data = self.train_loaders[i]
test_data = self.test_loaders[i]
ppnet = model_dict[self.name_models[i]].to(device)
model_client = torch.nn.DataParallel(ppnet)
joint_optimizer_client = joint_optimizer_dict[self.name_joint_optim[i]]
# joint_lr_scheduler = torch.optim.lr_scheduler.StepLR(joint_optimizer_client, step_size=self.joint_lr_step_size, gamma=0.1)
print("Client", i)
for epoch in range(self.numEpoch):
mode(model_client, joint=True)
model_client.train()
# joint_lr_scheduler.step()
train_accuracy, loss = train_or_test(model_client, train_data, joint_optimizer_client, class_specific=True)
model_client.eval()
acc, loss_te = train_or_test(model_client, test_data, class_specific=True)
if epoch == self.numEpoch - 1:
save_model_w_condition(model=model_client, model_dir=self.model_dir, model_name='client_' + str(i) + '_' + str(round) + 'nopush', acc=acc, target_acc=0.4)
print("Epoch: {:3.0f}".format(epoch+1) + " | train accuracy: {:7.5f}".format(train_accuracy) + " | test accuracy: {:7.5f}".format(acc))
def clients_push_and_save(self, model_dict, round, aggregate_conv=False):
for i in range(self.clients):
train_push_data = self.train_push_loaders[i]
ppnet = model_dict[self.name_models[i]].to(device)
model_client = torch.nn.DataParallel(ppnet)
update=True # update protoytpes by push
if aggregate_conv:
update=False
push_prototypes(
train_push_data, # pytorch dataloader (must be unnormalized in [0,1])
prototype_network_parallel=model_client, # pytorch network with prototype_vectors
class_specific=True,
preprocess_input_function=preprocess_input_function, # normalize if needed
prototype_layer_stride=1,
root_dir_for_saving_prototypes=self.root_dir_for_saving_prototypes, # if not None, prototypes will be saved here
epoch_number=round, # if not provided, prototypes saved previously will be overwritten
prototype_img_filename_prefix='client_' + str(i) + '_' + self.prototype_img_filename_prefix,
prototype_self_act_filename_prefix='client_' + str(i) + '_' + self.prototype_self_act_filename_prefix,
proto_bound_boxes_filename_prefix='client_' + str(i) + '_' + self.proto_bound_boxes_filename_prefix,
save_prototype_class_identity=True,
update=update)
def client_train_last (self, model_dict, last_layer_optimizer_dict, round):
for i in range(self.clients):
train_data = self.train_loaders[i]
test_data = self.test_loaders[i]
ppnet = model_dict[self.name_models[i]].to(device)
model_client = torch.nn.DataParallel(ppnet)
last_layer_optimizer_client = last_layer_optimizer_dict[self.name_last_layer_optim[i]]
print("Client", i)
if self.prototype_activation_function != 'linear':
mode(model_client, last=True)
for j in range(12):
train_acc, loss = train_or_test(model_client, train_data, last_layer_optimizer_client, class_specific=True)
acc, loss_te = train_or_test(model_client, test_data, class_specific=True)
if j == 11:
save_model_w_condition(model=model_client, model_dir=self.model_dir, model_name='client_' + str(i) + '_last_' + 'round_' + str(round) + '_push', acc=acc, target_acc=0.1)
print("train accuracy: {:7.5f}".format(train_acc) + " | test accuracy: {:7.5f}".format(acc))
def save_models(self, model_dict, round):
for i in range(self.clients):
test_data = self.test_loaders[0]
ppnet = model_dict[self.name_models[i]].to(device)
model_client = torch.nn.DataParallel(ppnet)
model_client.eval()
acc, loss_te = train_or_test(model_client, test_data, class_specific=True)
save_model_w_condition(model=model_client, model_dir=self.model_dir, model_name='client_' + str(i) + '_final_' + 'round_' + str(round) + '_', acc=acc, target_acc=0.1)
print("Test accuracy after centralized update: {:7.5f}".format(acc))
self.model.eval()
acc, loss_te = train_or_test(self.model, test_data, class_specific=True)
save_model_w_condition(model=self.model, model_dir=self.model_dir, model_name='server_final_round_' + str(round) + '_', acc=acc, target_acc=0.1)
print("Test accuracy after centralized update: {:7.5f}".format(acc))
'''Implementation''' #######################################################################################################
def run_Fed_PPNet (self, model_dict=None, to_continue=False, aggregate_conv=False):
model_dict, joint_optimizer_dict, warm_optimizer_dict, last_layer_optimizer_dict = self.model_dict_PPNet(in_model_dict=model_dict)
self.name_models = list(model_dict.keys())
self.name_joint_optim = list(joint_optimizer_dict.keys())
self.name_warm_optim = list(warm_optimizer_dict.keys())
self.name_last_layer_optim = list(last_layer_optimizer_dict.keys())
for j in range(self.num_round):
print(f'-----Round {j}-----')
if j == 0 and to_continue is False:
print('The model is initialized and sent to clients')
model_dict = self.send_main_model_to_clients(model_dict)
if aggregate_conv:
model_dict = self.send_main_model_features_to_clients(model_dict)
model_dict = self.send_main_model_added_layers_to_clients(model_dict)
model_dict = self.send_main_model_norm_to_clients(model_dict)
print('----------\nClients perform training')
print('Warm')
self.client_train_warm(model_dict, warm_optimizer_dict)
print('----------\nParameters are sent to the server and aggregated')
self.model = self.update_main_model_param_prot_vectors(model_dict)
self.model = self.update_main_model_param_last_layer(model_dict)
if aggregate_conv:
self.model = self.update_main_model_param_features(model_dict)
self.model = self.update_main_model_param_added_layers(model_dict)
self.model = self.update_main_model_param_norm(model_dict)
print('Updated model is sent to clients')
model_dict = self.send_main_model_to_clients(model_dict)
if aggregate_conv:
model_dict = self.send_main_model_features_to_clients(model_dict)
model_dict = self.send_main_model_added_layers_to_clients(model_dict)
model_dict = self.send_main_model_norm_to_clients(model_dict)
else:
# print('Server model weights of the 1st normalization layer:')
# print(self.model.module.features.features.denseblock1.denselayer1.norm1.weight[-1])
# print('First client model weights of the 1st normalization layer:')
# print(model_dict['model0'].features.features.denseblock1.denselayer1.norm1.weight[-1])
print('----------\nClients perform training')
self.client_train_joint(model_dict, joint_optimizer_dict, j)
if aggregate_conv:
self.client_train_last(model_dict, last_layer_optimizer_dict, j)
# print('Server model weights of the 1st normalization layer:')
# print(self.model.module.features.features.denseblock1.denselayer1.norm1.weight[-1])
# print('First client model weights of the 1st normalization layer:')
# print(model_dict['model0'].features.features.denseblock1.denselayer1.norm1.weight[-1])
print('----------\nParameters are sent to the server and aggregated')
self.model = self.update_main_model_param_prot_vectors(model_dict)
self.model = self.update_main_model_param_last_layer(model_dict)
if aggregate_conv:
self.model = self.update_main_model_param_features(model_dict)
self.model = self.update_main_model_param_added_layers(model_dict)
self.model = self.update_main_model_param_norm(model_dict)
# print('Server model weights of the 1st normalization layer:')
# print(self.model.module.features.features.denseblock1.denselayer1.norm1.weight[-1])
# print('First client model weights of the 1st normalization layer:')
# print(model_dict['model0'].features.features.denseblock1.denselayer1.norm1.weight[-1])
print('Updated model is sent to clients')
model_dict = self.send_main_model_to_clients(model_dict)
if aggregate_conv:
model_dict = self.send_main_model_features_to_clients(model_dict)
model_dict = self.send_main_model_added_layers_to_clients(model_dict)
model_dict = self.send_main_model_norm_to_clients(model_dict)
# print('Server model weights of the 1st normalization layer:')
# print(self.model.module.features.features.denseblock1.denselayer1.norm1.weight[-1])
# print('First client model weights of the 1st normalization layer:')
# print(model_dict['model0'].features.features.denseblock1.denselayer1.norm1.weight[-1])
# print('Second client model weights of the 1st normalization layer:')
# print(model_dict['model1'].features.features.denseblock1.denselayer1.norm1.weight[-1])
self.clients_push_and_save(model_dict, j, aggregate_conv=aggregate_conv)
if aggregate_conv:
self.save_models(model_dict, j)
else:
self.client_train_last(model_dict, last_layer_optimizer_dict, j)
return model_dict