-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmaze chart.py
57 lines (38 loc) · 1.63 KB
/
maze chart.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import numpy as np
import matplotlib.pyplot as plt
PIXEL_SIZE = 144
THRESHOLD = 0.3
def rgb2gray(img):
height, width, _ = img.shape
gray_img_arr = np.zeros(shape=(height, width))
for i in range(height):
for j in range(width):
r_gray = img.item((i, j, 0)) * 0.299
g_gray = img.item((i, j, 1)) * 0.587
b_gray = img.item((i, j, 2)) * 0.114
gray_img_arr[i, j] = r_gray + g_gray + b_gray
return gray_img_arr
def threshold(img, threshold):
height, width = img.shape
for i in range(height):
for j in range(width):
img[i, j] = 1 if img[i, j] > threshold else 0
return img
def scale_img2factor(target_img, factor):
c_height, c_width, _ = target_img.shape
t_height, t_width = int(c_height*factor), int(c_width*factor)
new_img_arr = np.zeros(shape=(t_height, t_width, 3))
for i in range(t_height):
for j in range(t_width):
new_img_arr[i , j, 0] = target_img.item((min(c_height-1, round(i/factor)), min(c_width-1, round(j/factor)), 0))
new_img_arr[i , j, 1] = target_img.item((min(c_height-1, round(i/factor)), min(c_width-1, round(j/factor)), 1))
new_img_arr[i , j, 2] = target_img.item((min(c_height-1, round(i/factor)), min(c_width-1, round(j/factor)), 2))
return new_img_arr
img = plt.imread("abclol.jpeg")
img = img/255
height, width, _ = img.shape
final_img = scale_img2factor(img, 1/PIXEL_SIZE)
final_img = rgb2gray(final_img)
plt.imsave("idekbruh.jpeg", final_img, cmap = 'gray')
final_img_t = threshold(final_img, THRESHOLD)
plt.imsave("idekbruht.jpeg", final_img_t, cmap = 'gray')