-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlstm_train.py
142 lines (117 loc) · 4.54 KB
/
lstm_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.stattools import adfuller
from statsmodels.tsa.seasonal import STL
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
import math
import torch
import torch.nn as nn
from torch.optim import Adam
from torch.utils.data import DataLoader, TensorDataset
# Matplotlib settings
plt.rcParams["figure.figsize"] = (12, 2)
plt.style.use('ggplot')
def decide_device():
if (torch.cuda.is_available()): return "cuda"
#if (torch.backends.mps.is_available()): return "mps"
return "cpu"
# Data creation and preprocessing
n = 500
x = np.arange(0, n, 1)
y = np.sin(16*np.pi*x/n) + np.cos(32*np.pi*x/n) + np.random.rand(n)
data_org = y.reshape(-1, 1)
print(data_org.shape)
plt.plot(data_org)
# Stationarity test
dftest = adfuller(data_org, autolag='AIC')
print(f"\t1. ADF: {dftest[0]}")
print(f"\t2. P-Value: {dftest[1]}")
print(f"\t3. Num Of Lags: {dftest[2]}")
# Seasonal decomposition
result = STL(data_org, period=6, robust=True).fit()
result.plot()
plt.show()
data_cleaned = result.trend.reshape(-1, 1)
# Data normalization
scaler = MinMaxScaler(feature_range=(0, 1))
data_trans = scaler.fit_transform(data_cleaned)
# Data splitting
train_size = int(len(data_trans) * 0.80)
test_size = len(data_trans) - train_size
train, test = data_trans[0:train_size, :], data_trans[train_size:len(data_trans), :]
# PyTorch Dataset
look_back = 10
def create_dataset(data, look_back):
sequences = []
targets = []
for i in range(len(data) - look_back):
sequence = data[i:i + look_back]
target = data[i + look_back]
sequences.append(sequence)
targets.append(target)
sequences, targets = np.array(sequences), np.array(targets)
return torch.tensor(sequences).float(), torch.tensor(targets).float()
train_sequences, train_targets = create_dataset(train, look_back)
test_sequences, test_targets = create_dataset(test, look_back)
train_dataset = TensorDataset(train_sequences, train_targets)
test_dataset = TensorDataset(test_sequences, test_targets)
train_loader = DataLoader(train_dataset, batch_size=1, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False)
# PyTorch model
class LSTMModel(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(LSTMModel, self).__init__()
self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
self.linear = nn.Linear(hidden_size, output_size)
def forward(self, x):
_, (h_n, _) = self.lstm(x)
x = self.linear(h_n.squeeze(0))
return x
model = LSTMModel(1, 5, 1)
optimizer = Adam(model.parameters(), lr=0.001)
criterion = nn.MSELoss()
device = torch.device(decide_device())
best_model_state = None
# Training loop
def train(model, train_loader, criterion, optimizer):
global best_model_state
model.train()
curr_loss = 200
for epoch in range(20):
for sequences, targets in train_loader:
optimizer.zero_grad()
sequences = sequences.to(device)
targets = targets.to(device)
outputs = model(sequences)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
if loss.item() < curr_loss:
print("Found best model at epoch: ",epoch)
curr_loss = loss.item()
best_model_state = model.state_dict().copy()
print(f'Epoch {epoch+1}, Loss: {loss.item()}')
train(model, train_loader, criterion, optimizer)
# Evaluation function
def evaluate(model, loader):
model.eval()
predictions, actuals = [], []
with torch.no_grad():
for sequences, targets in loader:
outputs = model(sequences)
predictions.append(outputs.numpy())
actuals.append(targets.numpy())
return np.array(predictions), np.array(actuals)
trainPredict, trainY = evaluate(model, train_loader)
testPredict, testY = evaluate(model, test_loader)
# Rescaling predictions
trainPredict = scaler.inverse_transform(trainPredict.reshape(-1, 1))
testPredict = scaler.inverse_transform(testPredict.reshape(-1, 1))
trainY = scaler.inverse_transform(trainY.reshape(-1, 1))
testY = scaler.inverse_transform(testY.reshape(-1, 1))
# Calculate RMSE
trainScore = math.sqrt(mean_squared_error(trainY, trainPredict))
testScore = math.sqrt(mean_squared_error(testY, testPredict))
torch.save(best_model_state, 'lstm_model.pt')