-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmodels.py
188 lines (137 loc) · 6.6 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from tensorflow import keras
import numpy as np
from sklearn.ensemble import RandomForestRegressor
import tensorflow as tf
from tensorflow.keras import layers
def residual_block(x, dilation, n_filters, kernel_size, l2):
x_in = x
x = layers.Conv1D(filters=n_filters, kernel_size=kernel_size, dilation_rate=dilation, padding='causal', kernel_regularizer=keras.regularizers.l2(l2))(x)
x = layers.BatchNormalization(axis=-1)(x)
x = layers.Activation('relu')(x)
x = layers.Conv1D(filters=n_filters, kernel_size=kernel_size, dilation_rate=dilation,padding='causal',kernel_regularizer=keras.regularizers.l2(l2))(x)
x = layers.BatchNormalization(axis=-1)(x)
x = x + layers.Conv1D(filters=n_filters,kernel_size=1,dilation_rate=1,kernel_regularizer=keras.regularizers.l2(l2))(x_in)
x = layers.Activation('relu')(x)
return x
def tcn(P):
x_in = layers.Input(shape=(P['time_steps_in'], P['n_vars']))
x = x_in
for d in P['dilations']:
x = residual_block(x, dilation=d, n_filters=P['n_filters'], kernel_size=P['kernel_size'], l2=P['l2'])
x = layers.GlobalAveragePooling1D()(x)
x = layers.Dense(P['time_steps_out']*len(P['quantiles']), kernel_regularizer=keras.regularizers.l2(P['l2']))(x)
out_quantiles = tf.reshape(x, (-1, P['time_steps_out'], len(P['quantiles'])))
model = keras.Model(inputs=[x_in], outputs=[out_quantiles])
# model.summary()
return model
def LSTM_stateful(P):
# Since we use return_sequences=True, we must specify batch shape explicitly
x_in = layers.Input(batch_shape=(P['batch_size'], P['time_steps_in'], P['n_vars']))
x = x_in
if P['n_layers'] > 1:
for i in range(P['n_layers']-1):
x = layers.LSTM(P['units'],
stateful=True,
return_sequences=True,
kernel_regularizer=keras.regularizers.l2(P['l2']))(x)
x = layers.LSTM(P['units'],
stateful=True,
kernel_regularizer=keras.regularizers.l2(P['l2']))(x)
x = layers.Dense(P['time_steps_out']*len(P['quantiles']), kernel_regularizer=keras.regularizers.l2(P['l2']))(x)
out_quantiles = tf.reshape(x, (-1, P['time_steps_out'], len(P['quantiles'])))
model = keras.Model(inputs=[x_in], outputs=[out_quantiles])
# model.summary()
return model
def _pin_loss(labels, pred, quantiles):
loss = []
for i,q in enumerate(quantiles):
error = tf.subtract(labels,pred[:,:,i])
loss_q = tf.reduce_mean(tf.maximum(q*error,(q-1)*error))
loss.append(loss_q)
L = tf.convert_to_tensor(loss)
total_loss = tf.reduce_mean(L)
return total_loss
def pi_cov(y_true, y_pred):
"""
Compute average coverage of prediction intervals
"""
coverage = tf.reduce_mean(
tf.cast((y_true >= y_pred[:,:,0])&(y_true <= y_pred[:,:,2]), tf.float32))
return coverage
def pi_len(y_true, y_pred):
"""
Compute length of prediction intervals
"""
avg_length = tf.reduce_mean(tf.abs(y_pred[:,:,2] - y_pred[:,:,0]))
avg_length = avg_length/(tf.reduce_max(y_true) - tf.reduce_min(y_true))
return avg_length
class keras_model():
def __init__(self, P):
self.P = P
if P['model_type'] == 'lstm':
self.model = LSTM_stateful(P)
elif P['model_type'] == 'tcn':
self.model = tcn(P)
else:
raise ValueError("model_type must be 'lstm' or 'tcn'")
def fit(self, train_x, train_y, val_x, val_y, epochs=100, patience=10, verbose=0):
# Create a tf Dataset.
tf_train_data = tf.data.Dataset.from_tensor_slices((train_x, train_y)).repeat().batch(self.P['batch_size'])
val_data = tf.data.Dataset.from_tensor_slices((val_x, val_y)).repeat().batch(self.P['batch_size'])
# Since we use repeat(), we must specify the number of times we draw a bach in an epoch
TRAIN_STEPS = int(np.ceil(train_x.shape[0]/self.P['batch_size']))
VAL_STEPS = int(np.ceil(val_x.shape[0]/self.P['batch_size']))
if self.P['regression'] == 'quantile':
self.model.compile(optimizer='adam',
loss=[lambda y_true, y_pred: _pin_loss(y_true, y_pred, self.P['quantiles'])],
metrics=[pi_cov, pi_len])
elif self.P['regression'] == 'linear':
self.model.compile(optimizer='adam',
loss='mse')
es = tf.keras.callbacks.EarlyStopping(
monitor="val_loss",
patience=patience,
)
history = self.model.fit(tf_train_data,
validation_data=val_data,
epochs=epochs,
steps_per_epoch=TRAIN_STEPS,
validation_steps=VAL_STEPS,
callbacks=[es],
verbose=verbose)
return history
def transform(self, data_x):
tf_data = tf.data.Dataset.from_tensor_slices(data_x).repeat().batch(self.P['batch_size'])
it = iter(tf_data)
n_steps = int(np.ceil(data_x.shape[0]/self.P['batch_size']))
preds =[]
for _ in range(n_steps):
batch = next(it)
preds.append(self.model(batch))
preds = np.concatenate(preds, axis=0)
preds = preds[:data_x.shape[0],:,:]
return preds
class rf_model():
def __init__(self, P):
self.P = P
self.model = RandomForestRegressor(n_estimators=P['n_trees'])
def fit(self, train_x, train_y, val_x=None, val_y=None):
self.model.fit(train_x.reshape(train_x.shape[0],-1), train_y)
def transform(self, data_x, percentile=90):
data_x = data_x.reshape(data_x.shape[0], -1)
prediction_int = np.zeros((data_x.shape[0], self.P['time_steps_out'], 3))
preds = []
for tree in self.model.estimators_:
preds.append(tree.predict(data_x))
preds = np.stack(preds, axis=-1)
prediction_int[:,:,0] = np.percentile(preds, self.P['quantiles'][0]*100, axis=-1)
prediction_int[:,:,1] = np.percentile(preds, self.P['quantiles'][1]*100, axis=-1)
prediction_int[:,:,2] = np.percentile(preds, self.P['quantiles'][2]*100, axis=-1)
return prediction_int
def regression_model(P):
if P['model_type'] in ['lstm', 'tcn']:
return keras_model(P)
elif P['model_type'] == 'rf':
return rf_model(P)
else:
raise ValueError("model_type must be 'lstm', 'tcn', or 'rf'")