-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAVL_insert.py
171 lines (136 loc) · 4.25 KB
/
AVL_insert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Python code to insert a node in AVL tree.
# AN AVL tree (also known as a height binary
# tree) is a tree in which each node possesses
# one of the following properties:
# 1) a node is called left heavy if the longest
# path in its left subtree is one longer than the
# longest path of its right subtree
# 2) A node is called right heavy if the longest
# path in the right subtree is one longer than
# longest path in its left subtree.
# 3) A node is called balanced if the longest path in
# both the left and right subtree are equal.
#
# An AVL tree is a height-balanced tree where the
# difference between the heights of the left and right
# subtrees of every node is either 1,0, or -1. The
# difference between the heights of the subtrees is
# maintained by a factor named the balance factor. We
# can therefore define AVL as a balanced binary search
# tree where the balance factor of every node in the tree
# is either -1, 0, or 1. The balance formular is simply;
# height of left subtree - height of right subtree. Since
# an AVL tree is a height-balanced tree, it helps to control
# the height of the binary search tree and further helps
# the tree to prevent skewing. When the binary tree gets
# skewed, the running-time complexity becomes the
# worst case scenario (i.e. O(n)) but in the case of
# the AVL tree, the time complexity remains O(log n).An
# AVL tree is always preferable to a binary search tree.
# Rotation is alwatys required to restore the balance after
# an insertion or deletion from an AVL tree. There is no
# space to discuss this here.
# Generic tree node class
class TreeNode(object):
def __init__(self, val):
self.val = val
self.left = None
self.right = None
self.height = 1
# AVL tree class which supports the
# Insert operation
class AVL_Tree(object):
# Recursive function to insert key in
# subtree rooted with node and returns
# new root of subtree.
def insert(self, root, key):
# Step 1 - Perform normal BST
if not root:
return TreeNode(key)
elif key < root.val:
root.left = self.insert(root.left, key)
else:
root.right = self.insert(root.right, key)
# Step 2 - Update the height of the
# ancestor node
root.height = 1 + max(self.getHeight(root.left),
self.getHeight(root.right))
# Step 3 - Get the balance factor
balance = self.getBalance(root)
# Step 4 - If the node is unbalanced,
# then try out the 4 cases
# Case 1 - Left Left
if balance > 1 and key < root.left.val:
return self.rightRotate(root)
# Case 2 - Right Right
if balance < -1 and key > root.right.val:
return self.leftRotate(root)
# Case 3 - Left Right
if balance > 1 and key > root.left.val:
root.left = self.leftRotate(root.left)
return self.rightRotate(root)
# Case 4 - Right Left
if balance < -1 and key < root.right.val:
root.right = self.rightRotate(root.right)
return self.leftRotate(root)
return root
def leftRotate(self, z):
y = z.right
T2 = y.left
# Perform rotation
y.left = z
z.right = T2
# Update heights
z.height = 1 + max(self.getHeight(z.left),
self.getHeight(z.right))
y.height = 1 + max(self.getHeight(y.left),
self.getHeight(y.right))
# Return the new root
return y
def rightRotate(self, z):
y = z.left
T3 = y.right
# Perform rotation
y.right = z
z.left = T3
# Update heights
z.height = 1 + max(self.getHeight(z.left),
self.getHeight(z.right))
y.height = 1 + max(self.getHeight(y.left),
self.getHeight(y.right))
# Return the new root
return y
def getHeight(self, root):
if not root:
return 0
return root.height
def getBalance(self, root):
if not root:
return 0
return self.getHeight(root.left) - self.getHeight(root.right)
def preOrder(self, root):
if not root:
return
print("{0} ".format(root.val), end="")
self.preOrder(root.left)
self.preOrder(root.right)
# Driver program to test above function
myTree = AVL_Tree()
root = None
root = myTree.insert(root, 10)
root = myTree.insert(root, 20)
root = myTree.insert(root, 30)
root = myTree.insert(root, 40)
root = myTree.insert(root, 50)
root = myTree.insert(root, 25)
"""The constructed AVL Tree would be
30
/ \
20 40
/ \ \
10 25 50"""
# Preorder Traversal
print("Preorder traversal of the",
"constructed AVL tree is")
myTree.preOrder(root)
print()