-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.jl
196 lines (153 loc) · 6.87 KB
/
model.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
using DifferentialEquations
using DiffEqSensitivity
using ForwardDiff
using GlobalSensitivity
using Statistics
using Printf
using Interpolations
using CSV
using DataFrames
# Create the linear interpolation object for temperature catch. Do it here once.
time_df = sort!(CSV.read("temp_reconstruction.csv", DataFrame)) # Load the CSV file into a DataFrame. CSV is time, temperature
temp_interp = LinearInterpolation(time_df[:,1], time_df[:,2]) # Create an interpolation object
# Some variables
Q10 = 1.5 # Assumed Q10 value for EEA and growth rate
mu_T0 = -10 # Original temperature of the max growth rate.
eea_T0 = -6 # Original temperature of the eea rate.
println("Q10 adjustments in effect. Constants defined in top of model.jl file.")
# Runs the model using solve_model and packages results nicely.
function run_model(p, u0)
cbs = make_callbacks(sensitivity_analysis=false, p=p)
# Convert p and u0, and remove puncutal_punctual_organic_carbon_addition from p
p = convert(Array{Float64}, p[1:end-1])
u0 = convert(Array{Float64}, u0)
prob = ODEProblem(model, u0[1:end-1], (0.0, last(u0)), p)
sol = solve(prob, Rosenbrock23(), callback=cbs, maxiters=1e7, tstops=time_df[:,1])
# Return the solution array - [pOC, dOC, DIC, Cells, t]
return [[x[1] for x in sol.u], [x[2] for x in sol.u], [x[3] for x in sol.u], [x[4] for x in sol.u], sol.t]
end
# Runs the sensitivity analysis using Sobol method.
function run_sensitivity_analysis(p_bounds, u0_length)
# In Sensitivity analysis, parameters include the initial conditions.
p_bounds = [p_bounds[i, :] for i in 1:size(p_bounds, 1)] # Fix array shape
p_bounds = convert(Array{Array{Float64}}, p_bounds[1:end])
lb = [p_bounds[i][1] for i in 1:size(p_bounds, 1)]
ub = [p_bounds[i][2] for i in 1:size(p_bounds, 1)]
# Timespan must stay constant
@assert ub[end] == lb[end] "Timespan must not be subjected to SA"
# Get cbs
cbs = make_callbacks(sensitivity_analysis=true)
# Define a function that remakes the problem and gets its result. Called for each sample.
f1 = function (p)
# u0 is the last n indices
prob = ODEProblem(model, p[end-u0_length+1:end-1], (0.0, p[end]), p[1:end-u0_length])
sol = solve(prob, Rosenbrock23(); callback=cbs, maxiters=1e6, saveat=ub[end])
sol[:, end]
end
# Run GSA
sobol_result = GlobalSensitivity.gsa(f1, Sobol(order=[0, 1], nboot=5, conf_level=0.95), p_bounds, samples=2^20)
return (sobol_result.ST, sobol_result.S1, sobol_result.ST_Conf_Int, sobol_result.S1_Conf_Int)
end
# Defines a problem object and solves it.
function make_callbacks(;sensitivity_analysis=false, p=nothing)
# Build a callback to introduce a carbon addition as it is a discontinuity
carbon_add_cb = nothing
if !sensitivity_analysis
stops = []
carbon = []
punctual_organic_carbon_addition = p[end] == -1 ? [] : p[end]
for (time_to_add, (pOC_to_add, dOC_to_add)) in punctual_organic_carbon_addition
push!(stops, time_to_add)
push!(carbon, (convert(Float64, pOC_to_add), convert(Float64, dOC_to_add)))
end
# Callback for punctual addition - causes a discontinuity
additions = Dict(Pair.(stops, carbon))
function addition!(integrator)
integrator.u[1] += additions[integrator.t][1]
integrator.u[2] += additions[integrator.t][2]
if integrator.u[4] < 1
integrator.u[4] = 1 # Add a viable cell if none exist
end
end
carbon_add_cb = PresetTimeCallback(stops, addition!)
end
# Callback for the max() function in the model - causes a discontinuity.
# If max equation changes, this condition will have to change.
max_condition(u, t, integrator) = integrator.p[2] * u[4] - u[2]
do_nothing(integrator) = nothing
max_cb = ContinuousCallback(max_condition, do_nothing)
# Growth rate condition
growth_condition(u, t, integer) = (temp_interp(t) < -15)
gr_cb = DiscreteCallback(growth_condition, do_nothing)
# Min condition for EEA rate
eea_min_condition(u, t, integrator) = integrator.p[10] * Q10^((temp_interp(t) - eea_T0) / 10) * u[4] - u[1]
eea_min_cb = ContinuousCallback(eea_min_condition, do_nothing)
# Min condition for DIC fixation rate
ic_min_condition(u, t, integrator) = integrator.p[8] - u[3]
ic_min_cb = ContinuousCallback(ic_min_condition, do_nothing)
# Set things to 0 if they are less than 1e-100
zero_condition(u, t, integrator) = any(x -> x < 1e-20, u)
function zero_out!(integrator)
for i in 1:4
if integrator.u[i] < 1e-20
integrator.u[i] = 0
end
end
end
zero_cb = DiscreteCallback(zero_condition, zero_out!)
# Callback list
return CallbackSet(carbon_add_cb, max_cb, eea_min_cb, gr_cb, ic_min_cb, zero_cb, PositiveDomain())
end
# Implements the differential equations that define the model
function model(du, u, p, t)
# Parameters
mu_max = p[1]
maintenance_per_cell = p[2]
dOC_per_cell = p[3]
carrying_capacity = p[4]
pOC_input_rate = p[5]
dOC_input_rate = p[6]
inorganic_carbon_input_rate = p[7]
inorganic_carbon_fixing_rate = p[8]
inorganic_carbon_per_cell = p[9]
eea_rate = p[10]
Kd = p[11]
# Load state conditions
pOC_content = u[1]
dOC_content = u[2]
inorganic_carbon_content = u[3]
cell_count = u[4]
## CELL COUNT
# Adjust growth rate for Q10
current_temp = temp_interp(t) # Find temperature at current time
if current_temp < -15
# Set growth rate to 0 if temperature is below -15°C
adjusted_growth_rate = 0
else
adjusted_growth_rate = mu_max * Q10^((current_temp - mu_T0) / 10)
end
# Growth
growth = adjusted_growth_rate * (dOC_content / (Kd + dOC_content)) * cell_count * (1 - cell_count / carrying_capacity)
# Organic carbon requirement
required_dOC_per_cell = maintenance_per_cell
required_dOC = required_dOC_per_cell * cell_count
# Starvation Deaths
dOC_missing = max(required_dOC - dOC_content, 0)
starvation_deaths = dOC_missing / required_dOC_per_cell
# Total Deaths
deaths = starvation_deaths
## CARBON
dOC_consumption = required_dOC_per_cell * (cell_count - deaths)
fixed_carbon = min(inorganic_carbon_fixing_rate, inorganic_carbon_content)
# EEA rate
adjusted_eea_rate = eea_rate * Q10^((current_temp - eea_T0) / 10)
eea_removal = min(adjusted_eea_rate*cell_count, pOC_content)
# Particulate Organic carbon
du[1] = pOC_input_rate - eea_removal
# Dissolved Organic carbon
du[2] = dOC_input_rate + dOC_per_cell * (deaths - growth) - dOC_consumption + eea_removal + fixed_carbon
# Inorganic carbon
du[3] = inorganic_carbon_input_rate + inorganic_carbon_per_cell * (deaths - growth) + required_dOC - fixed_carbon
# Net cell count change
du[4] = growth - deaths
end