forked from cleverhans-lab/machine-unlearning
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdistribution.py
196 lines (176 loc) · 7.5 KB
/
distribution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import numpy as np
import json
import os
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--shards",
default=None,
type=int,
help="Split the dataset in the given number of shards in an optimized manner (PLS-GAP partitionning) according to the given distribution, create the corresponding splitfile",
)
parser.add_argument(
"--requests",
default=None,
type=int,
help="Generate the given number of unlearning requests according to the given distribution and apply them directly to the splitfile",
)
parser.add_argument(
"--distribution",
default="uniform",
help="Assumed distribution when used with --shards, sampling distribution when used with --requests. Use 'reset' to reset requestfile, default uniform",
)
parser.add_argument("--container", default="default", help="Name of the container")
parser.add_argument(
"--dataset",
default="datasets/purchase/datasetfile",
help="Location of the datasetfile, default datasets/purchase/datasetfile",
)
parser.add_argument("--label", default="latest", help="Label, default latest")
args = parser.parse_args()
# Load dataset metadata.
with open(args.dataset) as f:
datasetfile = json.loads(f.read())
if args.shards != None:
# If distribution is uniform, split without optimizing.
if args.distribution == "uniform":
partition = np.split(
np.arange(0, datasetfile["nb_train"]),
[
t * (datasetfile["nb_train"] // args.shards)
for t in range(1, args.shards)
],
)
np.save("containers/{}/splitfile.npy".format(args.container), partition)
requests = np.array([[] for _ in range(args.shards)])
np.save(
"containers/{}/requestfile:{}.npy".format(args.container, args.label),
requests,
)
# Else run PLS-GAP algorithm to find a low cost split.
else:
def mass(index):
if args.distribution.split(":")[0] == "exponential":
lbd = (
float(args.distribution.split(":")[1])
if len(args.distribution.split(":")) > 1
else -np.log(0.05) / datasetfile["nb_train"]
)
return np.exp(-lbd * index) - np.exp(-lbd * (index + 1))
if args.distribution.split(":")[0] == "pareto":
a = (
float(args.distribution.split(":")[1])
if len(args.distribution.split(":")) > 1
else 1.16
)
return a / ((index + 1) ** (a + 1))
if args.shards != None:
# Initialize queue and partition.
weights = mass(np.arange(0, datasetfile["nb_train"]))
indices = np.argsort(weights)
queue = np.array([weights[indices], np.ones(weights.shape)]).transpose()
partition = [np.array([index]) for index in indices]
# Put all points in the top queue.
bottom_queue = queue.shape[0] # pylint: disable=unsubscriptable-object
lim = (
int(float(args.algo.split(":")[1]) * datasetfile["nb_train"])
if len(args.algo.split(":")) > 1
else int(0.01 * datasetfile["nb_train"])
)
for _ in range(datasetfile["nb_train"] - args.shards):
# Fetch top 2 clusters and merge them.
w1 = queue[0]
w2 = queue[1]
l1 = partition[0]
l2 = partition[1]
partition = partition[2:]
queue = queue[2:]
bottom_queue -= 2
merged_weight = w1 + w2
# If merged cluster is smaller in number of points than the limit, insert it in top queue.
if merged_weight[1] < lim:
# Top queue is ordered first by number of points (weight[1]) and second by cost (weight[0]).
offset_array = np.where(queue[:bottom_queue, 1] >= merged_weight[1])
limit_array = np.where(queue[:bottom_queue, 1] > merged_weight[1])
offset = (
offset_array[0][0]
if offset_array[0].shape[0] > 0
else bottom_queue
)
limit = (
limit_array[0][0]
if limit_array[0].shape[0] > 0
else bottom_queue
)
position_array = np.where(
queue[offset:limit][:, 0] >= merged_weight[0]
)
position = (
position_array[0][0]
if position_array[0].shape[0] > 0
else bottom_queue
)
bottom_queue += 1
# Otherwise insert it in the bottom queue.
else:
# Bottom queue is ordered by cost only.
position_array = np.where(
queue[bottom_queue:][:, 0] >= merged_weight[0]
)
position = (
position_array[0][0]
if position_array[0].shape[0] > 0
else queue.shape[0]
)
# Actual insertion.
queue = np.insert(queue, position, merged_weight, axis=0)
partition = (
partition[:position]
+ [np.concatenate((l1, l2))]
+ partition[position:]
)
# Generate splitfile and empty request file.
np.save("containers/{}/splitfile.npy".format(args.container), partition)
requests = np.array([[] for _ in range(partition.shape[0])])
np.save(
"containers/{}/requestfile:{}.npy".format(args.container, args.label),
requests,
)
if args.requests != None:
if args.distribution == "reset":
requests = np.array([[] for _ in range(partition.shape[0])])
np.save(
"containers/{}/requestfile:{}.npy".format(args.container, args.label),
requests,
)
else:
# Load splitfile.
partition = np.load(
"containers/{}/splitfile.npy".format(args.container), allow_pickle=True
)
# Randomly select points to be removed with given distribution at the dataset scale.
if args.distribution.split(":")[0] == "exponential":
lbd = (
float(args.distribution.split(":")[1])
if len(args.distribution.split(":")) > 1
else -np.log(0.05) / datasetfile["nb_train"]
)
all_requests = np.random.exponential(1 / lbd, (args.requests,))
if args.distribution.split(":")[0] == "pareto":
a = (
float(args.distribution.split(":")[1])
if len(args.distribution.split(":")) > 1
else 1.16
)
all_requests = np.random.pareto(a, (args.requests,))
else:
all_requests = np.random.randint(0, datasetfile["nb_train"], args.requests)
requests = []
# Divide up the new requests among the shards.
for shard in range(partition.shape[0]):
requests.append(np.intersect1d(partition[shard], all_requests))
# Update requestfile.
np.save(
"containers/{}/requestfile:{}.npy".format(args.container, args.label),
np.array(requests),
)