forked from ggerganov/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathk_quants.c
4318 lines (3422 loc) · 170 KB
/
k_quants.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "k_quants.h"
#include "ggml.h"
#include <math.h>
#include <string.h>
#include <assert.h>
#ifdef __ARM_NEON
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
//
// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
//
#include <arm_neon.h>
#if !defined(__aarch64__)
inline static int32_t vaddvq_s16(int16x8_t v) {
return
(int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
(int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
(int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
(int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
}
inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
return vcombine_s16(a0, b0);
}
inline static int32_t vaddvq_s32(int32x4_t v) {
return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
}
#endif
#else
#ifdef __wasm_simd128__
#include <wasm_simd128.h>
#else
#ifdef __POWER9_VECTOR__
#include <altivec.h>
#undef bool
#define bool _Bool
#else
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <intrin.h>
#else
#if !defined(__riscv)
#include <immintrin.h>
#endif
#endif
#endif
#endif
#endif
#undef MIN
#undef MAX
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
//
// 2-6 bit quantization in super-blocks
//
//
// ===================== Helper functions
//
static inline int nearest_int(float fval) {
assert(fval <= 4194303.f);
float val = fval + 12582912.f;
int i; memcpy(&i, &val, sizeof(int));
return (i & 0x007fffff) - 0x00400000;
}
static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type) {
float max = 0;
float amax = 0;
for (int i = 0; i < n; ++i) {
float ax = fabsf(x[i]);
if (ax > amax) { amax = ax; max = x[i]; }
}
if (amax < 1e-30f) { // all zero
for (int i = 0; i < n; ++i) {
L[i] = 0;
}
return 0.f;
}
float iscale = -nmax / max;
if (rmse_type == 0) {
for (int i = 0; i < n; ++i) {
int l = nearest_int(iscale * x[i]);
L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
}
return 1/iscale;
}
bool return_early = false;
if (rmse_type < 0) {
rmse_type = -rmse_type;
return_early = true;
}
int weight_type = rmse_type%2;
float sumlx = 0;
float suml2 = 0;
for (int i = 0; i < n; ++i) {
int l = nearest_int(iscale * x[i]);
l = MAX(-nmax, MIN(nmax-1, l));
L[i] = l + nmax;
float w = weight_type == 1 ? x[i] * x[i] : 1;
sumlx += w*x[i]*l;
suml2 += w*l*l;
}
float scale = sumlx/suml2;
if (return_early) return suml2 > 0 ? 0.5f*(scale + 1/iscale) : 1/iscale;
float best = scale * sumlx;
for (int is = -9; is <= 9; ++is) {
if (is == 0) {
continue;
}
iscale = -(nmax + 0.1f*is) / max;
sumlx = suml2 = 0;
for (int i = 0; i < n; ++i) {
int l = nearest_int(iscale * x[i]);
l = MAX(-nmax, MIN(nmax-1, l));
float w = weight_type == 1 ? x[i] * x[i] : 1;
sumlx += w*x[i]*l;
suml2 += w*l*l;
}
if (suml2 > 0 && sumlx*sumlx > best*suml2) {
for (int i = 0; i < n; ++i) {
int l = nearest_int(iscale * x[i]);
L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
}
scale = sumlx/suml2; best = scale*sumlx;
}
}
return scale;
}
static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
float max = 0;
float amax = 0;
for (int i = 0; i < n; ++i) {
float ax = fabsf(x[i]);
if (ax > amax) { amax = ax; max = x[i]; }
}
if (!amax) { // all zero
for (int i = 0; i < n; ++i) { L[i] = 0; }
return 0.f;
}
float iscale = -nmax / max;
if (do_rmse) {
float sumlx = 0;
float suml2 = 0;
for (int i = 0; i < n; ++i) {
int l = nearest_int(iscale * x[i]);
l = MAX(-nmax, MIN(nmax-1, l));
L[i] = l;
float w = x[i]*x[i];
sumlx += w*x[i]*l;
suml2 += w*l*l;
}
for (int itry = 0; itry < 5; ++itry) {
int n_changed = 0;
for (int i = 0; i < n; ++i) {
float w = x[i]*x[i];
float slx = sumlx - w*x[i]*L[i];
if (slx > 0) {
float sl2 = suml2 - w*L[i]*L[i];
int new_l = nearest_int(x[i] * sl2 / slx);
new_l = MAX(-nmax, MIN(nmax-1, new_l));
if (new_l != L[i]) {
slx += w*x[i]*new_l;
sl2 += w*new_l*new_l;
if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
L[i] = new_l; sumlx = slx; suml2 = sl2;
++n_changed;
}
}
}
}
if (!n_changed) {
break;
}
}
for (int i = 0; i < n; ++i) {
L[i] += nmax;
}
return sumlx / suml2;
}
for (int i = 0; i < n; ++i) {
int l = nearest_int(iscale * x[i]);
l = MAX(-nmax, MIN(nmax-1, l));
L[i] = l + nmax;
}
return 1/iscale;
}
static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min,
int ntry, float alpha) {
float min = x[0];
float max = x[0];
for (int i = 1; i < n; ++i) {
if (x[i] < min) min = x[i];
if (x[i] > max) max = x[i];
}
if (max == min) {
for (int i = 0; i < n; ++i) L[i] = 0;
*the_min = 0;
return 0.f;
}
if (min > 0) min = 0;
float iscale = nmax/(max - min);
float scale = 1/iscale;
for (int itry = 0; itry < ntry; ++itry) {
float sumlx = 0; int suml2 = 0;
bool did_change = false;
for (int i = 0; i < n; ++i) {
int l = nearest_int(iscale*(x[i] - min));
l = MAX(0, MIN(nmax, l));
if (l != L[i]) {
L[i] = l;
did_change = true;
}
sumlx += (x[i] - min)*l;
suml2 += l*l;
}
scale = sumlx/suml2;
float sum = 0;
for (int i = 0; i < n; ++i) {
sum += x[i] - scale*L[i];
}
min = alpha*min + (1 - alpha)*sum/n;
if (min > 0) min = 0;
iscale = 1/scale;
if (!did_change) break;
}
*the_min = -min;
return scale;
}
static float make_qkx2_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
float rmin, float rdelta, int nstep, bool use_mad) {
float min = x[0];
float max = x[0];
float sum_w = weights[0];
float sum_x = sum_w * x[0];
for (int i = 1; i < n; ++i) {
if (x[i] < min) min = x[i];
if (x[i] > max) max = x[i];
float w = weights[i];
sum_w += w;
sum_x += w * x[i];
}
if (min > 0) min = 0;
if (max == min) {
for (int i = 0; i < n; ++i) L[i] = 0;
*the_min = -min;
return 0.f;
}
float iscale = nmax/(max - min);
float scale = 1/iscale;
float best_mad = 0;
for (int i = 0; i < n; ++i) {
int l = nearest_int(iscale*(x[i] - min));
L[i] = MAX(0, MIN(nmax, l));
float diff = scale * L[i] + min - x[i];
diff = use_mad ? fabsf(diff) : diff * diff;
float w = weights[i];
best_mad += w * diff;
}
if (nstep < 1) {
*the_min = -min;
return scale;
}
for (int is = 0; is <= nstep; ++is) {
iscale = (rmin + rdelta*is + nmax)/(max - min);
float sum_l = 0, sum_l2 = 0, sum_xl = 0;
for (int i = 0; i < n; ++i) {
int l = nearest_int(iscale*(x[i] - min));
l = MAX(0, MIN(nmax, l));
Laux[i] = l;
float w = weights[i];
sum_l += w*l;
sum_l2 += w*l*l;
sum_xl += w*l*x[i];
}
float D = sum_w * sum_l2 - sum_l * sum_l;
if (D > 0) {
float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
if (this_min > 0) {
this_min = 0;
this_scale = sum_xl / sum_l2;
}
float mad = 0;
for (int i = 0; i < n; ++i) {
float diff = this_scale * Laux[i] + this_min - x[i];
diff = use_mad ? fabsf(diff) : diff * diff;
float w = weights[i];
mad += w * diff;
}
if (mad < best_mad) {
for (int i = 0; i < n; ++i) {
L[i] = Laux[i];
}
best_mad = mad;
scale = this_scale;
min = this_min;
}
}
}
*the_min = -min;
return scale;
}
#if QK_K == 256
static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
if (j < 4) {
*d = q[j] & 63; *m = q[j + 4] & 63;
} else {
*d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
*m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
}
}
#endif
//========================- 2-bit (de)-quantization
void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k) {
assert(k % QK_K == 0);
const int nb = k / QK_K;
uint8_t L[QK_K];
uint8_t Laux[16];
float weights[16];
float mins[QK_K/16];
float scales[QK_K/16];
const float q4scale = 15.f;
for (int i = 0; i < nb; i++) {
float max_scale = 0; // as we are deducting the min, scales are always positive
float max_min = 0;
for (int j = 0; j < QK_K/16; ++j) {
for (int l = 0; l < 16; ++l) weights[l] = fabsf(x[16*j + l]);
scales[j] = make_qkx2_quants(16, 3, x + 16*j, weights, L + 16*j, &mins[j], Laux, -0.5f, 0.1f, 15, true);
float scale = scales[j];
if (scale > max_scale) {
max_scale = scale;
}
float min = mins[j];
if (min > max_min) {
max_min = min;
}
}
if (max_scale > 0) {
float iscale = q4scale/max_scale;
for (int j = 0; j < QK_K/16; ++j) {
int l = nearest_int(iscale*scales[j]);
y[i].scales[j] = l;
}
y[i].d = ggml_fp32_to_fp16(max_scale/q4scale);
} else {
for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
y[i].d = ggml_fp32_to_fp16(0.f);
}
if (max_min > 0) {
float iscale = q4scale/max_min;
for (int j = 0; j < QK_K/16; ++j) {
int l = nearest_int(iscale*mins[j]);
y[i].scales[j] |= (l << 4);
}
y[i].dmin = ggml_fp32_to_fp16(max_min/q4scale);
} else {
y[i].dmin = ggml_fp32_to_fp16(0.f);
}
for (int j = 0; j < QK_K/16; ++j) {
const float d = ggml_fp16_to_fp32(y[i].d) * (y[i].scales[j] & 0xF);
if (!d) continue;
const float dm = ggml_fp16_to_fp32(y[i].dmin) * (y[i].scales[j] >> 4);
for (int ii = 0; ii < 16; ++ii) {
int l = nearest_int((x[16*j + ii] + dm)/d);
l = MAX(0, MIN(3, l));
L[16*j + ii] = l;
}
}
#if QK_K == 256
for (int j = 0; j < QK_K; j += 128) {
for (int l = 0; l < 32; ++l) {
y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
}
}
#else
for (int l = 0; l < 16; ++l) {
y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
}
#endif
x += QK_K;
}
}
void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k) {
assert(k % QK_K == 0);
const int nb = k / QK_K;
for (int i = 0; i < nb; i++) {
const float d = ggml_fp16_to_fp32(x[i].d);
const float min = ggml_fp16_to_fp32(x[i].dmin);
const uint8_t * q = x[i].qs;
#if QK_K == 256
int is = 0;
float dl, ml;
for (int n = 0; n < QK_K; n += 128) {
int shift = 0;
for (int j = 0; j < 4; ++j) {
uint8_t sc = x[i].scales[is++];
dl = d * (sc & 0xF); ml = min * (sc >> 4);
for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
sc = x[i].scales[is++];
dl = d * (sc & 0xF); ml = min * (sc >> 4);
for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
shift += 2;
}
q += 32;
}
#else
float dl1 = d * (x[i].scales[0] & 0xF), ml1 = min * (x[i].scales[0] >> 4);
float dl2 = d * (x[i].scales[1] & 0xF), ml2 = min * (x[i].scales[1] >> 4);
float dl3 = d * (x[i].scales[2] & 0xF), ml3 = min * (x[i].scales[2] >> 4);
float dl4 = d * (x[i].scales[3] & 0xF), ml4 = min * (x[i].scales[3] >> 4);
for (int l = 0; l < 16; ++l) {
y[l+ 0] = dl1 * ((int8_t)((q[l] >> 0) & 3)) - ml1;
y[l+16] = dl2 * ((int8_t)((q[l] >> 2) & 3)) - ml2;
y[l+32] = dl3 * ((int8_t)((q[l] >> 4) & 3)) - ml3;
y[l+48] = dl4 * ((int8_t)((q[l] >> 6) & 3)) - ml4;
}
y += QK_K;
#endif
}
}
void quantize_row_q2_K(const float * restrict x, void * restrict vy, int k) {
quantize_row_q2_K_reference(x, vy, k);
}
size_t ggml_quantize_q2_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
const int nb = k / QK_K;
// TODO - collect histograms - although, at a second thought, I don't really care about them
(void)hist;
for (int j = 0; j < nb; j += k) {
block_q2_K * restrict y = (block_q2_K *)dst + j/QK_K;
quantize_row_q2_K_reference(src + j, y, k);
}
return (n/QK_K*sizeof(block_q2_K));
}
//========================= 3-bit (de)-quantization
void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k) {
assert(k % QK_K == 0);
const int nb = k / QK_K;
int8_t L[QK_K];
float scales[QK_K / 16];
for (int i = 0; i < nb; i++) {
float max_scale = 0;
float amax = 0;
for (int j = 0; j < QK_K/16; ++j) {
scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true);
float scale = fabsf(scales[j]);
if (scale > amax) {
amax = scale; max_scale = scales[j];
}
}
#if QK_K == 256
memset(y[i].scales, 0, 12);
if (max_scale) {
float iscale = -32.f/max_scale;
for (int j = 0; j < QK_K/16; ++j) {
int8_t l = nearest_int(iscale*scales[j]);
l = MAX(-32, MIN(31, l)) + 32;
if (j < 8) {
y[i].scales[j] = l & 0xF;
} else {
y[i].scales[j-8] |= ((l & 0xF) << 4);
}
l >>= 4;
y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
}
y[i].d = ggml_fp32_to_fp16(1/iscale);
} else {
y[i].d = ggml_fp32_to_fp16(0.f);
}
int8_t sc;
for (int j = 0; j < QK_K/16; ++j) {
sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
float d = ggml_fp16_to_fp32(y[i].d) * sc;
if (!d) {
continue;
}
for (int ii = 0; ii < 16; ++ii) {
int l = nearest_int(x[16*j + ii]/d);
l = MAX(-4, MIN(3, l));
L[16*j + ii] = l + 4;
}
}
#else
if (max_scale) {
float iscale = -8.f/max_scale;
for (int j = 0; j < QK_K/16; j+=2) {
int l1 = nearest_int(iscale*scales[j]);
l1 = 8 + MAX(-8, MIN(7, l1));
int l2 = nearest_int(iscale*scales[j+1]);
l2 = 8 + MAX(-8, MIN(7, l2));
y[i].scales[j/2] = l1 | (l2 << 4);
}
y[i].d = ggml_fp32_to_fp16(1/iscale);
} else {
for (int j = 0; j < QK_K/16; j+=2) {
y[i].scales[j/2] = 0;
}
y[i].d = ggml_fp32_to_fp16(0.f);
}
for (int j = 0; j < QK_K/16; ++j) {
int s = j%2 == 0 ? y[i].scales[j/2] & 0xF : y[i].scales[j/2] >> 4;
float d = ggml_fp16_to_fp32(y[i].d) * (s - 8);
if (!d) {
continue;
}
for (int ii = 0; ii < 16; ++ii) {
int l = nearest_int(x[16*j + ii]/d);
l = MAX(-4, MIN(3, l));
L[16*j + ii] = l + 4;
}
}
#endif
memset(y[i].hmask, 0, QK_K/8);
// We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
int m = 0;
uint8_t hm = 1;
for (int j = 0; j < QK_K; ++j) {
if (L[j] > 3) {
y[i].hmask[m] |= hm;
L[j] -= 4;
}
if (++m == QK_K/8) {
m = 0; hm <<= 1;
}
}
#if QK_K == 256
for (int j = 0; j < QK_K; j += 128) {
for (int l = 0; l < 32; ++l) {
y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
}
}
#else
for (int l = 0; l < 16; ++l) {
y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
}
#endif
x += QK_K;
}
}
#if QK_K == 256
void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
assert(k % QK_K == 0);
const int nb = k / QK_K;
const uint32_t kmask1 = 0x03030303;
const uint32_t kmask2 = 0x0f0f0f0f;
uint32_t aux[4];
const int8_t * scales = (const int8_t*)aux;
for (int i = 0; i < nb; i++) {
const float d_all = ggml_fp16_to_fp32(x[i].d);
const uint8_t * restrict q = x[i].qs;
const uint8_t * restrict hm = x[i].hmask;
uint8_t m = 1;
memcpy(aux, x[i].scales, 12);
uint32_t tmp = aux[2];
aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
int is = 0;
float dl;
for (int n = 0; n < QK_K; n += 128) {
int shift = 0;
for (int j = 0; j < 4; ++j) {
dl = d_all * (scales[is++] - 32);
for (int l = 0; l < 16; ++l) {
*y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
}
dl = d_all * (scales[is++] - 32);
for (int l = 0; l < 16; ++l) {
*y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
}
shift += 2;
m <<= 1;
}
q += 32;
}
}
}
#else
void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
assert(k % QK_K == 0);
assert(QK_K == 64);
const int nb = k / QK_K;
for (int i = 0; i < nb; i++) {
const float d_all = ggml_fp16_to_fp32(x[i].d);
const uint8_t * restrict q = x[i].qs;
const uint8_t * restrict hm = x[i].hmask;
const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8);
const float d2 = d_all * ((x[i].scales[0] >> 4) - 8);
const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8);
const float d4 = d_all * ((x[i].scales[1] >> 4) - 8);
for (int l=0; l<8; ++l) {
uint8_t h = hm[l];
y[l+ 0] = d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((h & 0x01) ? 0 : 4));
y[l+ 8] = d1 * ((int8_t)((q[l+8] >> 0) & 3) - ((h & 0x02) ? 0 : 4));
y[l+16] = d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((h & 0x04) ? 0 : 4));
y[l+24] = d2 * ((int8_t)((q[l+8] >> 2) & 3) - ((h & 0x08) ? 0 : 4));
y[l+32] = d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((h & 0x10) ? 0 : 4));
y[l+40] = d3 * ((int8_t)((q[l+8] >> 4) & 3) - ((h & 0x20) ? 0 : 4));
y[l+48] = d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((h & 0x40) ? 0 : 4));
y[l+56] = d4 * ((int8_t)((q[l+8] >> 6) & 3) - ((h & 0x80) ? 0 : 4));
}
y += QK_K;
}
}
#endif
void quantize_row_q3_K(const float * restrict x, void * restrict vy, int k) {
quantize_row_q3_K_reference(x, vy, k);
}
size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
const int nb = k / QK_K;
// TODO - collect histograms - although, at a second thought, I don't really care about them
(void)hist;
for (int j = 0; j < nb; j += k) {
block_q3_K * restrict y = (block_q3_K *)dst + j/QK_K;
quantize_row_q3_K_reference(src + j, y, k);
}
return (n/QK_K*sizeof(block_q3_K));
}
// ====================== 4-bit (de)-quantization
void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k) {
assert(k % QK_K == 0);
const int nb = k / QK_K;
uint8_t L[QK_K];
uint8_t Laux[32];
float weights[32];
float mins[QK_K/32];
float scales[QK_K/32];
for (int i = 0; i < nb; i++) {
float max_scale = 0; // as we are deducting the min, scales are always positive
float max_min = 0;
for (int j = 0; j < QK_K/32; ++j) {
//scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
float sum_x2 = 0;
for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
float av_x = sqrtf(sum_x2/32);
for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false);
float scale = scales[j];
if (scale > max_scale) {
max_scale = scale;
}
float min = mins[j];
if (min > max_min) {
max_min = min;
}
}
#if QK_K == 256
float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
for (int j = 0; j < QK_K/32; ++j) {
uint8_t ls = nearest_int(inv_scale*scales[j]);
uint8_t lm = nearest_int(inv_min*mins[j]);
ls = MIN(63, ls);
lm = MIN(63, lm);
if (j < 4) {
y[i].scales[j] = ls;
y[i].scales[j+4] = lm;
} else {
y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
y[i].scales[j-4] |= ((ls >> 4) << 6);
y[i].scales[j-0] |= ((lm >> 4) << 6);
}
}
y[i].d = ggml_fp32_to_fp16(max_scale/63.f);
y[i].dmin = ggml_fp32_to_fp16(max_min/63.f);
uint8_t sc, m;
for (int j = 0; j < QK_K/32; ++j) {
get_scale_min_k4(j, y[i].scales, &sc, &m);
const float d = ggml_fp16_to_fp32(y[i].d) * sc;
if (!d) continue;
const float dm = ggml_fp16_to_fp32(y[i].dmin) * m;
for (int ii = 0; ii < 32; ++ii) {
int l = nearest_int((x[32*j + ii] + dm)/d);
l = MAX(0, MIN(15, l));
L[32*j + ii] = l;
}
}
#else
const float s_factor = 15.f;
float inv_scale = max_scale > 0 ? s_factor/max_scale : 0.f;
float inv_min = max_min > 0 ? s_factor/max_min : 0.f;
int d1 = nearest_int(inv_scale*scales[0]);
int m1 = nearest_int(inv_min*mins[0]);
int d2 = nearest_int(inv_scale*scales[1]);
int m2 = nearest_int(inv_min*mins[1]);
y[i].scales[0] = d1 | (m1 << 4);
y[i].scales[1] = d2 | (m2 << 4);
y[i].d[0] = ggml_fp32_to_fp16(max_scale/s_factor);
y[i].d[1] = ggml_fp32_to_fp16(max_min/s_factor);
float sumlx = 0;
int suml2 = 0;
for (int j = 0; j < QK_K/32; ++j) {
const uint8_t sd = y[i].scales[j] & 0xF;
const uint8_t sm = y[i].scales[j] >> 4;
const float d = ggml_fp16_to_fp32(y[i].d[0]) * sd;
if (!d) continue;
const float m = ggml_fp16_to_fp32(y[i].d[1]) * sm;
for (int ii = 0; ii < 32; ++ii) {
int l = nearest_int((x[32*j + ii] + m)/d);
l = MAX(0, MIN(15, l));
L[32*j + ii] = l;
sumlx += (x[32*j + ii] + m)*l*sd;
suml2 += l*l*sd*sd;
}
}
if (suml2) {
y[i].d[0] = ggml_fp32_to_fp16(sumlx/suml2);
}
#endif
uint8_t * q = y[i].qs;
for (int j = 0; j < QK_K; j += 64) {
for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
q += 32;
}
x += QK_K;
}
}
void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k) {
assert(k % QK_K == 0);
const int nb = k / QK_K;
for (int i = 0; i < nb; i++) {
const uint8_t * q = x[i].qs;
#if QK_K == 256
const float d = ggml_fp16_to_fp32(x[i].d);
const float min = ggml_fp16_to_fp32(x[i].dmin);
int is = 0;
uint8_t sc, m;
for (int j = 0; j < QK_K; j += 64) {
get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
const float d1 = d * sc; const float m1 = min * m;
get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
const float d2 = d * sc; const float m2 = min * m;
for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
q += 32; is += 2;
}
#else
const float dall = ggml_fp16_to_fp32(x[i].d[0]);
const float mall = ggml_fp16_to_fp32(x[i].d[1]);
const float d1 = dall * (x[i].scales[0] & 0xF), m1 = mall * (x[i].scales[0] >> 4);
const float d2 = dall * (x[i].scales[1] & 0xF), m2 = mall * (x[i].scales[1] >> 4);
for (int l = 0; l < 32; ++l) {
y[l+ 0] = d1 * (q[l] & 0xF) - m1;
y[l+32] = d2 * (q[l] >> 4) - m2;
}
y += QK_K;
#endif
}
}
void quantize_row_q4_K(const float * restrict x, void * restrict vy, int k) {
assert(k % QK_K == 0);
block_q4_K * restrict y = vy;
quantize_row_q4_K_reference(x, y, k);
}
size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
assert(k % QK_K == 0);
const int nb = k / QK_K;
(void)hist; // TODO: collect histograms
for (int j = 0; j < nb; j += k) {
block_q4_K * restrict y = (block_q4_K *)dst + j/QK_K;
quantize_row_q4_K_reference(src + j, y, k);
}
return (n/QK_K*sizeof(block_q4_K));
}
// ====================== 5-bit (de)-quantization
void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k) {
assert(k % QK_K == 0);
const int nb = k / QK_K;
#if QK_K == 256
uint8_t L[QK_K];
float mins[QK_K/32];
float scales[QK_K/32];
float weights[32];
uint8_t Laux[32];
#else
int8_t L[QK_K];
float scales[QK_K/16];
#endif
for (int i = 0; i < nb; i++) {
#if QK_K == 256
float max_scale = 0; // as we are deducting the min, scales are always positive
float max_min = 0;
for (int j = 0; j < QK_K/32; ++j) {
//scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
float sum_x2 = 0;
for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
float av_x = sqrtf(sum_x2/32);
for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
scales[j] = make_qkx2_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.5f, 0.1f, 15, false);
float scale = scales[j];
if (scale > max_scale) {
max_scale = scale;
}
float min = mins[j];
if (min > max_min) {
max_min = min;
}
}
float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
for (int j = 0; j < QK_K/32; ++j) {
uint8_t ls = nearest_int(inv_scale*scales[j]);
uint8_t lm = nearest_int(inv_min*mins[j]);
ls = MIN(63, ls);
lm = MIN(63, lm);
if (j < 4) {
y[i].scales[j] = ls;
y[i].scales[j+4] = lm;
} else {
y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
y[i].scales[j-4] |= ((ls >> 4) << 6);
y[i].scales[j-0] |= ((lm >> 4) << 6);
}
}
y[i].d = ggml_fp32_to_fp16(max_scale/63.f);
y[i].dmin = ggml_fp32_to_fp16(max_min/63.f);
uint8_t sc, m;
for (int j = 0; j < QK_K/32; ++j) {
get_scale_min_k4(j, y[i].scales, &sc, &m);
const float d = ggml_fp16_to_fp32(y[i].d) * sc;
if (!d) continue;
const float dm = ggml_fp16_to_fp32(y[i].dmin) * m;
for (int ii = 0; ii < 32; ++ii) {
int l = nearest_int((x[32*j + ii] + dm)/d);
l = MAX(0, MIN(31, l));
L[32*j + ii] = l;
}
}
uint8_t * restrict qh = y[i].qh;
uint8_t * restrict ql = y[i].qs;
memset(qh, 0, QK_K/8);
uint8_t m1 = 1, m2 = 2;
for (int n = 0; n < QK_K; n += 64) {
for (int j = 0; j < 32; ++j) {
int l1 = L[n + j];
if (l1 > 15) {
l1 -= 16; qh[j] |= m1;
}
int l2 = L[n + j + 32];
if (l2 > 15) {
l2 -= 16; qh[j] |= m2;
}
ql[j] = l1 | (l2 << 4);
}
m1 <<= 2; m2 <<= 2;
ql += 32;
}
#else
float max_scale = 0, amax = 0;
for (int j = 0; j < QK_K/16; ++j) {
scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1);
float abs_scale = fabsf(scales[j]);
if (abs_scale > amax) {
amax = abs_scale;
max_scale = scales[j];
}
}
float iscale = -128.f/max_scale;
for (int j = 0; j < QK_K/16; ++j) {
int l = nearest_int(iscale*scales[j]);
y[i].scales[j] = MAX(-128, MIN(127, l));
}
y[i].d = ggml_fp32_to_fp16(1/iscale);
for (int j = 0; j < QK_K/16; ++j) {
const float d = ggml_fp16_to_fp32(y[i].d) * y[i].scales[j];
if (!d) continue;
for (int ii = 0; ii < 16; ++ii) {
int l = nearest_int(x[16*j + ii]/d);
l = MAX(-16, MIN(15, l));
L[16*j + ii] = l + 16;
}
}
uint8_t * restrict qh = y[i].qh;
uint8_t * restrict ql = y[i].qs;
memset(qh, 0, QK_K/8);
for (int j = 0; j < 32; ++j) {
int jm = j%8;
int is = j/8;
int l1 = L[j];
if (l1 > 15) {
l1 -= 16; qh[jm] |= (1 << is);
}
int l2 = L[j + 32];
if (l2 > 15) {
l2 -= 16; qh[jm] |= (1 << (4 + is));
}
ql[j] = l1 | (l2 << 4);
}
#endif
x += QK_K;
}
}
void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k) {