-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathread_datasets.py
182 lines (161 loc) · 7.87 KB
/
read_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import json, random
import os
import numpy as np
def read_data(instrument, foils_path, images_path, data_root):
if instrument == "vqa":
foils_data = read_vqa(foils_path, data_root)
elif instrument in ["gqa", "gqa_balanced"]:
foils_data = read_gqa(foils_path)
elif instrument == "nlvr2":
foils_data = read_nlvr2(foils_path, images_path)
elif "original-foil-dataset" in foils_path:
foils_data = read_foil_dataset(foils_path)
else:
with open(foils_path) as json_file:
foils_data = json.load(json_file)
return foils_data
def read_foil_dataset(foils_path):
"""
Read in the data of the original foil dataset and convert it on the fly to our format (dict/json).
"""
with open(foils_path) as json_file:
foil_dataset = json.load(json_file)
foils_data = {} # our format
for foil in foil_dataset['annotations']:
# For unimodal models, we always need foil, non-foil pairs to compare perplexity.
if foil['foil'] == True: # we have a foil not foil pair
# recover the original sentence
orig_sentence = foil['caption'].replace(
foil['foil_word'], foil['target_word'])
image_id = foil['image_id']
foils_data[foil["foil_id"]] = {'dataset': 'FOIL dataset',
'dataset_idx': foil["foil_id"],
'original_split': 'test',
'linguistic_phenomena': 'noun phrases',
# COCO_val2014_000000522703.jpg all are "val"
'image_file': f'COCO_val2014_{str(image_id).zfill(12)}.jpg',
'caption': orig_sentence,
'foils': [foil['caption']],
'classes': foil['target_word'],
'classes_foil': foil['foil_word'],
}
if len(foils_data) > 1500:
break
return foils_data
def read_vqa(vqa_path, data_root):
"""
Read in the VQA 2.0 data and transform it into our foiling format.
Input json looks like:
{'image_id': 535754, 'question': 'Does the statue have glasses on?', 'question_id': 535754002},
"""
foils_data = {}
split = 'val'
annotations_path = f'{data_root}VQA2.0/v2_mscoco_val2014_annotations.json'
with open(annotations_path) as json_file:
vqa_anno = json.load(json_file)
# print(vqa_anno.keys())
# print(vqa_anno['annotations'])
imgToQA = {ann['image_id']: [] for ann in vqa_anno['annotations']}
qa = {ann['question_id']: [] for ann in vqa_anno['annotations']}
for ann in vqa_anno['annotations']:
imgToQA[ann['image_id']] += [ann]
qa[ann['question_id']] = ann
with open(vqa_path) as json_file:
vqa_data = json.load(json_file)
# there are 81,434 images. Subsample 1k of them
np.random.seed(0)
subsample = np.random.choice(
len(vqa_data['questions']), 300, replace=False)
# print(foils_data.keys())
for i in subsample:
sample = vqa_data['questions'][i]
image_id = sample['image_id']
question = sample['question']
question_id = sample['question_id']
answer = qa[question_id]['multiple_choice_answer']
# print(image_id, question, question_id)
foils_data[image_id] = {'dataset': 'vqa',
# 'dataset_idx': foil["foil_id"],
# 'original_split': split,
# 'linguistic_phenomena': 'noun phrases',
# COCO_val2014_000000522703.jpg all are "val"
'image_file': f'COCO_{split}2014_{str(image_id).zfill(12)}.jpg',
'caption': question,
'answer': answer,
'answers': [x['answer'] for x in qa[question_id]['answers']]
# 'foils': [foil['caption']],
# 'classes': foil['target_word'],
# 'classes_foil': foil['foil_word'],
}
return foils_data
def read_gqa(gqa_path):
"""
Read in the GQA data and transform it into our foiling format.
Input json looks like:
"""
foils_data = {}
split = 'val'
np.random.seed(0)
with open(gqa_path) as json_file:
gqa_data = json.load(json_file)
# print(f'There are {len(gqa_data)} to choose from.')
# there are 81,434 images. Subsample 300 of them
gqa_data = dict(random.sample(sorted(gqa_data.items()), 300)) # 100
for idx, sample in gqa_data.items():
# sample = gqa_data['questions'][i]
# image_id = sample['image_id']
question = sample['question']
answer = sample['answer']
# print(image_id, question, question_id)
foils_data[idx] = {'dataset': 'gqa',
'dataset_idx': idx,
# 'original_split': split,
# 'linguistic_phenomena': 'noun phrases',
# COCO_val2014_000000522703.jpg all are "val"
'image_file': f'{sample["imageId"]}.jpg',
'caption': question,
'answer': answer,
# 'foils': [foil['caption']],
# 'classes': foil['target_word'],
# 'classes_foil': foil['foil_word'],
}
return foils_data
def read_nlvr2(nlvr_path, images_root):
"""
Read in the NLVR2 data and transform it into our foiling format.
Input json looks like:
"""
foils_data = {}
split = 'test'
with open(nlvr_path) as json_file:
nlvr_data = [json.loads(line) for line in json_file.readlines()]
# there are 81,434 images. Subsample 1k of them
np.random.seed(0)
# TODO increase this number!
subsample = np.random.choice(len(nlvr_data), 1500, replace=False)
# print(foils_data.keys())
for i in subsample:
sample = nlvr_data[i]
for k in [0, 1]: # 0 is left image, 1 is right
image_id = sample['identifier']
sentence = sample['sentence']
# print(image_id, question, question_id)
image_path = f'{sample["identifier"][:-2]}-img{k}.png'
# many images can not be downloaded anymore for NLVR2
if os.path.isfile(os.path.join(images_root, image_path)):
foils_data[image_id] = {'dataset': 'nlvr2',
# 'dataset_idx': foil["foil_id"],
# 'original_split': split,
# 'linguistic_phenomena': 'noun phrases',
# COCO_val2014_000000522703.jpg all are "val"
'image_file': image_path,
'caption': sentence,
'label': sample['label']
# 'foils': [foil['caption']],
# 'classes': foil['target_word'],
# 'classes_foil': foil['foil_word'],
}
return foils_data
if __name__ == "__main__":
gqa = ["/scratch/GQA/images/", "/scratch/GQA/test_all_questions.json"]
read_data('gqa', gqa[1], gqa[0])