Skip to content

Releases: ICB-DCM/pyPESTO

pyPESTO v0.3.1

29 Jun 09:24
9a75457
Compare
Choose a tag to compare
  • Visualize:
    • Parameter plot w/ hier. pars, noise estimation for splines (#1061)
  • Sampling:
    • AdaptiveMetropolis failure fix for bounded priors (#1065)
  • Ensembles
    • Speed up Ensemble from History (#1063)
  • PEtab support:
    • Support for petab 0.2.x (#1073)
    • Remove PetabImporterPysb #1082)
  • Objective
    • AggregatedObjective: objective-specific kwargs for call_unprocessed (#1068)
  • Select
    • Use predecessor stored in file (#1059)
    • support petab-select version 0.1.8 (#1070)
  • Examples
    • Synthetic data: update for libpetab-python v0.2.0 (#1060)
    • Fix error in sampling_diagnostics which led to test failure(#1092)
  • General
    • Test fixes (#1064)
    • Fix numpy DeprecationWarnings (#1076)
    • GHA: Fix deprecation warnings (#1075)
    • Fixed bug on existing file and no overwrite (#1046)
    • Fix error in bound checking (#1081)

pyPESTO v0.3.0

02 May 14:39
27a48d2
Compare
Choose a tag to compare

New functionalities compared to 0.2.0:

  • New supported data types for parameter estimation:
    • ordinal data
    • censored data
    • unbounded parameter optimization
  • New optimization approaches:
    • Hierarchical optimization
    • Spline approximation
  • New optimizers: CMA-ES, Enhanced Scatter Search, Fides, NLopt, SACESS, SciPy Differential Evolution
  • New samplers: Emcee, Dynesty, Pymc v4
  • New Objectives: Aesara objective, Julia objective, Jax objective
  • Ensemble analysis
  • Model selection
  • Predictions
  • Hdf5 Storage

Not supported functionalities and versions compared to 0.2.0:

  • Removed Python 3.8 and older support
  • Pymc (v3)
  • Removed Theano objective
  • Changed parameter indexing from boolean to int in profiling routines

pyPESTO v0.2.17

02 May 08:38
7ee0987
Compare
Choose a tag to compare
  • Optimize:
    • Parameter estimation from ordinal data (#971)
    • Parameter estimation from nonlinear-monotone data using spline approximation (#1028)
    • Parameter estimation using censored data (#1041)
    • Fix optimizer start point handling. (#1027)
    • Add option to summary to print full or reduced vectors. (#1040, #1045)
  • Sampling:
    • Dynesty sampler parallelization: changed the nested loglikelihood function to a class method (#1037)
    • Dynesty sampler docs (#1039)
  • Engine
    • Allow custom multiprocessing context (#1032)
  • General

pyPESTO v0.2.16

23 Feb 10:49
13ce29b
Compare
Choose a tag to compare
  • Optimize:
    • sacess optimizer (#988, #997)
    • Warn only once if using ineffiecient objective settings (#996)
    • Hierarchical Optimization (#1006)
    • Fix cma documentation (#987)
  • Petab
    • Improvement to create_startpoint_method() (#1018)
  • Sampling:
    • Dynesty sampler (#1002)
    • Fix test/sample/test_sample.py::test_samples_cis failures (#1004)
  • Visualization:
    • Fix misuse of start indices in waterfall plot (#1000)
    • Fix large function values in clustering for visualizations (#999)
    • parameter correlation diverging color scheme (#1009)
    • Optimization Parameter scatter plot (#1015)
  • Profiling:
    • added option to profile the whole parameter bounds. (#1014)
  • General
    • Add CODEOWNERS (#1001)
    • Add list of publications using pypesto (#1008)
    • allow passing results to init of pypesto.Result (#998)
    • Updated flake8 to ignore Error B028 from bugbear until support for python 3.8 runs out. (#1005)
    • black update (#1010)
    • Doc typo fixes (#995)
    • Doc: Install amici on RTD (#1016)
    • Add getting_started notebook (#1023)
    • remove alernative formats build (#1022)

pyPESTO v0.2.15

21 Dec 10:39
b3ea99c
Compare
Choose a tag to compare
  • Optimize:
    • Add an Enhanced Scatter Search optimizer (#941, #972)
    • Cooperative enhanced scatter search (#954)
    • Hierarchical optimization (#952, #975 )
    • Allow scipy optimizer to use fun with integrated grad (#979)
  • Sampling:
    • Remove fixed parameters from pymc sampling (#951)
    • emcee sampler: initialize walkers near optimum (#961)
    • dynesty Sampler (#963)
    • Fix pymc>=5 aesara/pytensor issues (#983)
  • Visualization:
    • Multi-result waterfall plot (#966)
    • Model fit visualization: use problem.objective to simulate, instead of AMICI directly (#969)
    • Unfix matplotlib version (#977)
    • Plot measurements in sampling_prediction_trajectories (#976)
  • Objective definition:
    • Support for jax objectives (#986)
  • General
    • Fix license_file SetuptoolsDeprecationWarning (#965)
    • Remove benchmark-models-petab requirement (#964)
    • Github Actions(#958, #989 )
    • Fix typehint for problem.x_priors_defs (#962)
    • Fix tox4-related issues (#981)
    • Fix AMICI deprecation warning (#956)
    • Add pypesto.visualize.model_fit to API doc (#991)
    • Exclude numpy==1.24.0 (#993)

pyPESTO v0.2.14

25 Oct 10:57
86f4fea
Compare
Choose a tag to compare
  • Ensembles:
    • Save and load weights and sigmay (#876)
    • Define relative cutoff (#855)
  • PEtab:
    • Pass problem kwargs via petab importer (#874)
    • Use benchmark-models-petab instead of manual download (#915)
    • Use fake RData in in prediction_to_petab_measurement_df (#925)
  • Optimize:
    • Fides: Include message according to exitflag (#878)
  • Sampling:
  • Visualization:
    • Fix waterfall plot limits for non-offsetted log-plots (#891)
    • Plot unflattened model fit from flattened PEtab problems (#914)
    • Added the offset value to waterfall plot for better intuitive understanding (#910, #945)
    • Visualize parameter correlation (#888)
  • History and storage:
    • Fix history-result reconstruction mismatch (#902)
    • Move history to own module (#903)
    • Remove chi2, schi2 except for history convenience function (#904)
    • Clean up history hierarchy (#908)
    • Fix read_result with history (#907)
    • Improve hdf5 history file lock (#909, #921)
    • Fix message in check_overwrite (#894)
    • Deactivate automatic saving (#930, #932)
    • Allow problem=None in read_result_from_file (#936)
    • Remove superfluous get_or_create_group (#937)
    • Extract read_history_from_file from read_result_from_file (#939)
    • Select: use model ID in save postprocessor filename, by default (#943)
  • Select:
    • Clean up use of minimize_options in model problem (#918)
    • User-supplied method to produce pyPESTO problem (#884)
    • Report, and binary model ID post-processors (#900)
    • Move method.py functionalities to ui.py in petab_select (#919)
  • Objective and Result:
    • Julia objective (#927)
    • Fix set of keys to aggregate results in aggregated objective (#883)
    • Nicer OptimizeResult.summary (#895, #916, #935, #942, )
    • Fix disjoint IDs check in OptimizerResult.append (#922)
    • Fix OptimizeResult pickling (#953)
  • General:
    • Remove version from CITATION.cff (#887)
    • Fix CI and docs (#892, #893)
    • Literal typehints for mode (#899)
    • Fix pandas deprecation warning (#896)
    • Document NEP 29 (time-window based python support) (#905)
    • Fix get_for_key deprecation warning (#906)
    • Fix multiple warnings from existing AMICI model (#912)
    • Fix warning from AMICI fixed overrides (#912)
    • Fix flaky test CRFunModeHistoryTest.test_trace_all (#917)
    • Fix novel B024 ABC without abstract methods (#923)
    • Improve API docs and add overview notebook (#911)
    • Fix typos (#926)
    • Fix julia tests (#929, #933)
    • Fix flaky test_mpipoolengine (#938)
    • More informative test IDs in test_optimize (#940)
    • Speed-up import via lazy imports (#946)

pyPESTO v0.2.13

02 Jun 11:34
488eca7
Compare
Choose a tag to compare
  • Ensembles:
    • Added standard deviation to ensemble prediction plots (#853)
  • Storage
    • Distinguish between scalar and vector values in Hdf5History._get_hdf5_entries (#856)
    • Fix hdf5 history overwrite (#861)
    • Updated optimization storage format. Made attributes explicit. (#863)
    • Added problem to result from read_results_from_file (#862)
  • General
    • Various additions to Optimize(r)Result summary method (#859, #865, #866, #867)
    • Fixed optimizer history fval offset (#834)
    • Updated the profile, minimize, sample and added overwrite as argument. (#864)
    • Fixed y-labels in pypesto.visualize.optimizer_history (#869)
    • Created show_bounds, to display proper sampling scatter plots. (#868)
    • Enabled saving messages and exit flags in hdf5 history in case of finished run (#873)
    • Select: use objective function evaluation time as optimization time for models with no estimated parameters (#872)
    • removed checking for equality and checking for np.allclose in `test_aesara (#877)

pyPESTO v0.2.12

14 Apr 07:53
4c30abf
Compare
Choose a tag to compare
  • AMICI:
    • Update to renamed steady state sensitivity modes (#843)
    • Set amici.Solver.setReturnDataReportingMode (#835)
    • Optimize pypesto/objective/amici_util.py::par_index_slices(#845)
    • Remove Solver.getPreequilibration (#830)
    • fix n_res size for error output with parameter dependent sigma (#812)
    • PetabImporter: Auto-regenerate AMICI models in case of version mismatch (#848 )
  • Pymc3
    • Disable Pymc3 Sampler tests (#831 )
  • Visualizations:
    • Waterfall zoom (#808 )
    • Reverse opacities of colors in prediction trajectories plots(#838)
    • Model fit plots (#850)
  • OptimizeResult:
    • Summary method (#816 )
    • Append method for OptimizeResult (#815 )
    • added getattr function to OptimizeResult (#802 )
  • General:
    • disable progress bar in tests (#799 )
    • Make Fides work with objectives, that do not have a hessian (#807 )
    • removed ftol in favor of tol (#803 )
    • Fix pyPESTO Select test; Update to stable black version (#810 )
    • Fix id assignment in case of large number of starts (#825 )
    • Temporarily fix jinja2 version (#826)
    • Upgrade black to be compatible with latest click (#829)
    • Fix wrong link in doc/example/hdf5_storage.ipynb (#827)
    • Mark test/base/test_prior.py::test_mode as flaky (#833)
    • Custom methods for autosave filenames (#822)
    • fix saving ensemble predictions to hdf5 (#840 )
    • Upgrad nbQA to 1.3.1 (#846)
    • removed constantParameters for constant_parameters in notebook (#852)

pyPESTO 0.2.11

12 Jan 13:33
a4ce1d2
Compare
Choose a tag to compare
  • Model selection (#397):

    • Automated model selection with forward/backward/brute force methods and
      AIC/AICc/BIC criteria
    • Much functionality (methods, criteria, model space, problem
      specification) via PEtab Select <https://github.com/PEtab-dev/petab_select>
    • Plotting routines
    • Example notebook <https://github.com/ICB-DCM/pyPESTO/blob/main/doc/example/model_selection.ipynb>
    • Model calibration postprocessors
    • Select first model that improves on predecessor model
    • Use previous MLE as startpoint
    • Tests
  • AMICI:

    • Maintain model settings when pickling for multiprocessing (#747)
  • General:

    • Apply nbqa black and isort to auto-format all notebooks via
      pre-commit hook (#794)
    • Apply black formatting via pre-commit hook (#796)
    • Require Python >= 3.8 (#795)
    • Fix various warnings (#778)
    • Minor fixes (#792)

pyPESTO 0.2.10

07 Jan 13:24
83091a4
Compare
Choose a tag to compare
  • AMICI:

    • Make AMICI objective report only what is being asked for (#777)
  • Optimization:

    • (Breaking) Refactor startpoint generation with clear assignments;
      allow checking gradients (#769)
    • (Breaking) Prioritize history vs optimize result (#775)
  • Storage:

    • Fix loading empty history and result generation from multiple
      histories (#764)
    • Fix autosave function for single-core (#770)
    • Fix potential autosave overwriting and typehints (#772)
    • Allow loading of partial results from history file (#783)
  • CI:

    • Compile AMICI models without gradients in test suite (#774)
  • General:

    • (Breaking) Create result sub-module; shift storage+result related
      functionality (#784)
    • Fix finite difference constant mode (#786)
    • Refactor ensemble module (#788)
    • Introduce general C constants file (#788)
    • Apply isort for automatic imports formatting (#785)
    • Reduce run log output (#789)
    • Various minor fixes (#765, #766, #768, #771)