diff --git a/src/models/model-U26C_smdl .json b/src/models/model-U26C_smdl .json new file mode 100755 index 00000000..7eda7795 --- /dev/null +++ b/src/models/model-U26C_smdl .json @@ -0,0 +1,244 @@ +{ + "Name": "NARPS U26C", + "Description": "NARPS Analysis model for team U26C", + "BIDSModelVersion": "1.0.0", + "Input": { + "task": [ + "MGT" + ] + }, + "Nodes": [ + { + "Level": "Run", + "Description": "Note: derivatives for motion correction are not implemented in pybids (added as '_der' in X below)", + "Name": "run", + "GroupBy": [ + "run", + "subject" + ], + "Transformations": { + "Transformer": "pybids-transforms-v1", + "Instructions": [ + { + "Description": "Turn the 'gain' column into a column 'trials' with only values of 1, to make sure all events are included.", + "Name": "Threshold", + "Input": [ + "gain" + ], + "Binarize": true, + "Output": [ + "trials" + ] + }, + { + "Description": "Create derivatives of motion correction parameters.", + "Name": "Derivative", + "Input": [ + "RotX", + "RotY", + "RotZ", + "X", + "Y", + "Z" + ], + "Order": 1, + "Initial": "NaN", + "Output": [ + "RotX_der", + "RotY_der", + "RotZ_der", + "X_der", + "Y_der", + "Z_der" + ] + } + ] + }, + "Model": { + "X": [ + "trials", + "gain", + "loss", + "RotX", + "RotY", + "RotZ", + "X", + "Y", + "Z", + "RotX_der", + "RotY_der", + "RotZ_der", + "X_der", + "Y_der", + "Z_der", + "CSF", + "WhiteMatter", + 1 + ], + "HRF": { + "Description": "Only events in the 'trials' are included as convolved. All other variables are confounds EXCEPT those listed below in Software.SPM.ParametricModulation.Values", + "Variables": [ + "trials" + ], + "Model": "spm" + }, + "Type": "glm", + "Software": { + "SPM": { + "SerialCorrelations": "AR(1)", + "Description": "list what conditions we must apply the modulation to and what values are used for the modulation.", + "ParametricModulations": [ + { + "Name": "pmod_loss", + "Conditions": [ + "trials" + ], + "Values": [ + "loss" + ] + }, + { + "Name": "pmod_gain", + "Conditions": [ + "trials" + ], + "Values": [ + "gain" + ] + } + ], + "PolynomialExpansion": 1 + } + } + }, + "DummyContrasts": { + "Conditions": [ + "trials", + "gain", + "loss" + ], + "Test": "t" + }, + "Options": { + "HighPassFilterCutoffHz": 0.08 + } + }, + { + "Level": "Subject", + "Name": "subject", + "GroupBy": [ + "subject", + "contrast" + ], + "Model": { + "X": [ + 1 + ], + "Type": "meta" + }, + "DummyContrasts": { + "Test": "t" + } + }, + { + "Level": "Dataset", + "Name": "between-groups", + "GroupBy": [ + "contrast" + ], + "Model": { + "Type": "glm", + "X": [ + 1, + "group" + ], + "Formula": "0 + C(group)" + }, + "Contrasts": [ + { + "Name": "range_vs_indiference", + "ConditionList": [ + "C(group)[T.equalRange]", + "C(group)[T.equalIndifference]" + ], + "Weights": [ + 1, + -1 + ], + "Test": "t" + } + ] + }, + { + "Level": "Dataset", + "Name": "positive", + "GroupBy": [ + "contrast", + "group" + ], + "Model": { + "Type": "glm", + "X": [ + 1 + ] + }, + "DummyContrasts": { + "Test": "t" + } + }, + { + "Level": "Dataset", + "Name": "negative-loss", + "GroupBy": [ + "contrast", + "group" + ], + "Model": { + "Type": "glm", + "X": [ + 1 + ] + }, + "Contrasts": [ + { + "Name": "negative", + "ConditionList": [ + 1 + ], + "Weights": [ + -1 + ], + "Test": "t" + } + ] + } + ], + "Edges": [ + { + "Source": "run", + "Destination": "subject" + }, + { + "Source": "subject", + "Destination": "positive" + }, + { + "Source": "subject", + "Destination": "negative-loss", + "Filter": { + "contrast": [ + "loss" + ] + } + }, + { + "Source": "subject", + "Destination": "between-groups", + "Filter": { + "contrast": [ + "loss" + ] + } + } + ] +}