diff --git a/narps_open/pipelines/__init__.py b/narps_open/pipelines/__init__.py index 1fb4980a..18cc2bff 100644 --- a/narps_open/pipelines/__init__.py +++ b/narps_open/pipelines/__init__.py @@ -31,7 +31,7 @@ '50GV': None, '51PW': 'PipelineTeam51PW', '5G9K': None, - '6FH5': None, + '6FH5': 'PipelineTeam6FH5', '6VV2': None, '80GC': None, '94GU': None, diff --git a/narps_open/pipelines/team_6FH5.py b/narps_open/pipelines/team_6FH5.py new file mode 100644 index 00000000..e6e3bafe --- /dev/null +++ b/narps_open/pipelines/team_6FH5.py @@ -0,0 +1,561 @@ +#!/usr/bin/python +# coding: utf-8 + +""" +This template can be use to reproduce a pipeline using SPM as main software. + +- Replace all occurrences of 48CD by the actual id of the team. +- All lines starting with [INFO], are meant to help you during the reproduction, these can be removed +eventually. +- Also remove lines starting with [TODO], once you did what they suggested. +""" + +# [TODO] Only import modules you use further in te code, remove others from the import section + +from os.path import join + +# [INFO] The import of base objects from Nipype, to create Workflows +from nipype import Node, Workflow # , JoinNode, MapNode + +# [INFO] a list of interfaces used to manpulate data +from nipype.interfaces.utility import IdentityInterface, Function +from nipype.interfaces.io import SelectFiles, DataSink +# from nipype.algorithms.misc import Gunzip + +# [INFO] a list of SPM-specific interfaces +# from nipype.algorithms.modelgen import SpecifySPMModel +# from nipype.interfaces.spm import ( +# Smooth, +# Level1Design, OneSampleTTestDesign, TwoSampleTTestDesign, +# EstimateModel, EstimateContrast, Threshold +# ) + +# [INFO] In order to inherit from Pipeline +from narps_open.pipelines import Pipeline + +class PipelineTeam6FH5(Pipeline): + """ A class that defines the pipeline of team 48CD """ + + def __init__(self): + # [INFO] Remove the init method completely if unused + # [TODO] Init the attributes of the pipeline, if any other than the ones defined + # in the pipeline class + pass + + def get_preprocessing(self): + """ Return a Nipype workflow describing the prerpocessing part of the pipeline """ + + # [INFO] The following part stays the same for all preprocessing pipelines + + # IdentityInterface node - allows to iterate over subjects and runs + info_source = Node( + IdentityInterface(fields=['subject_id', 'run_id']), + name='info_source' + ) + info_source.iterables = [ + ('subject_id', self.subject_list), + ('run_id', self.run_list), + ] + + # Templates to select files node + file_templates = { + 'anat': join( + 'sub-{subject_id}', 'anat', 'sub-{subject_id}_T1w.nii.gz' + ), + 'func': join( + 'sub-{subject_id}', 'func', 'sub-{subject_id}_task-MGT_run-{run_id}_bold.nii.gz' + ), + 'magnitude': join( + 'sub-{subject_id}', 'fmap', 'sub-{subject_id}_magnitude1.nii.gz' + ), + 'phasediff': join( + 'sub-{subject_id}', 'fmap', 'sub-{subject_id}_phasediff.nii.gz' + ) + } + + # SelectFiles node - to select necessary files + select_files = Node( + SelectFiles(file_templates, base_directory = self.directories.dataset_dir), + name='select_files' + ) + + # DataSink Node - store the wanted results in the wanted repository + data_sink = Node( + DataSink(base_directory = self.directories.output_dir), + name='data_sink', + ) + + # [INFO] The following part has to be modified with nodes of the pipeline + + # [TODO] For each node, replace 'node_name' by an explicit name, and use it for both: + # - the name of the variable in which you store the Node object + # - the 'name' attribute of the Node + # [TODO] The node_function refers to a NiPype interface that you must import + # at the beginning of the file. + node_name = Node( + node_function, + name='node_name' + ) + + # [TODO] Add another node for each step of the pipeline + + # [INFO] The following part defines the nipype workflow and the connections between nodes + + preprocessing = Workflow( + base_dir = self.directories.working_dir, + name = 'preprocessing' + ) + + # [TODO] Add the connections the workflow needs + # [INFO] Input and output names can be found on NiPype documentation + preprocessing.connect( + [ + ( + info_source, + select_files, + [('subject_id', 'subject_id'), ('run_id', 'run_id')], + ), + ( + select_files, + node_name, + [('func', 'node_input_name')], + ), + ( + node_name, + data_sink, + [('node_output_name', 'preprocessing.@sym_link')], + ), + ] + ) + + # [INFO] Here we simply return the created workflow + return preprocessing + + # [INFO] There was no run level analysis for the pipelines using SPM + def get_run_level_analysis(self): + """ Return a Nipype workflow describing the run level analysis part of the pipeline """ + return None + + # [INFO] This function is used in the subject level analysis pipelines using SPM + # [TODO] Adapt this example to your specific pipeline + def get_subject_infos(event_files: list, runs: list): + """ + The model contained 6 regressors per run: + + - One predictor with onset at the start of the trial and duration of 4s. + + - Two parametric modulators (one for gains, one for losses) + were added to the trial onset predictor. + The two parametric modulators were orthogonalized w.r.t. the main predictor, + but were not orthogonalized w.r.t. one another. + + - Two predictors modelling the decision output, + one for accepting the gamble and one for rejecting it + (merging strong and weak decisions). + + The onset was defined as the beginning of the trial + RT + and the duration was set to 0 (stick function). + - One constant term for each run was included (SPM12 default design). + + Create Bunchs for specifySPMModel. + + Parameters : + - event_files: list of events files (one per run) for the subject + - runs: list of runs to use + + Returns : + - subject_info : list of Bunch for 1st level analysis. + """ + from nipype.interfaces.base import Bunch + + condition_names = ['trial', 'accepting', 'rejecting'] + onset = {} + duration = {} + weights_gain = {} + weights_loss = {} + onset_button = {} + duration_button = {} + + # Loop over number of runs + for run_id in range(len(runs)): + + # Create dictionary items with empty lists + onset.update({s + '_run' + str(run_id + 1): [] for s in condition_names}) + duration.update({s + '_run' + str(run_id + 1): [] for s in condition_names}) + weights_gain.update({'gain_run' + str(run_id + 1): []}) + weights_loss.update({'loss_run' + str(run_id + 1): []}) + + with open(event_files[run_id], 'rt') as event_file: + next(event_file) # skip the header + + for line in event_file: + info = line.strip().split() + + for condition in condition_names: + val = condition + '_run' + str(run_id + 1) # trial_run1 or accepting_run1 + val_gain = 'gain_run' + str(run_id + 1) # gain_run1 + val_loss = 'loss_run' + str(run_id + 1) # loss_run1 + if condition == 'trial': + onset[val].append(float(info[0])) # onsets for trial_run1 + duration[val].append(float(4)) + weights_gain[val_gain].append(float(info[2])) + weights_loss[val_loss].append(float(info[3])) + elif condition == 'accepting' and 'accept' in info[5]: + onset[val].append(float(info[0]) + float(info[4])) + duration[val].append(float(0)) + elif condition == 'rejecting' and 'reject' in info[5]: + onset[val].append(float(info[0]) + float(info[4])) + duration[val].append(float(0)) + + # Bunching is done per run, i.e. trial_run1, trial_run2, etc. + # But names must not have '_run1' etc because we concatenate runs + subject_info = [] + for run_id in range(len(runs)): + + conditions = [s + '_run' + str(run_id + 1) for s in condition_names] + gain = 'gain_run' + str(run_id + 1) + loss = 'loss_run' + str(run_id + 1) + + subject_info.insert( + run_id, + Bunch( + conditions = condition_names, + onsets = [onset[c] for c in conditions], + durations = [duration[c] for c in conditions], + amplitudes = None, + tmod = None, + pmod = [ + Bunch( + name = ['gain', 'loss'], + poly = [1, 1], + param = [weights_gain[gain], weights_loss[loss]], + ), + None, + ], + regressor_names = None, + regressors = None, + ), + ) + + return subject_info + + # [INFO] This function creates the contrasts that will be analyzed in the first level analysis + # [TODO] Adapt this example to your specific pipeline + def get_contrasts(): + """ + Create the list of tuples that represents contrasts. + Each contrast is in the form : + (Name,Stat,[list of condition names],[weights on those conditions]) + + Returns: + - contrasts: list of tuples, list of contrasts to analyze + """ + # List of condition names + conditions = ['trial', 'trialxgain^1', 'trialxloss^1'] + + # Create contrasts + trial = ('trial', 'T', conditions, [1, 0, 0]) + effect_gain = ('effect_of_gain', 'T', conditions, [0, 1, 0]) + effect_loss = ('effect_of_loss', 'T', conditions, [0, 0, 1]) + + # Contrast list + return [trial, effect_gain, effect_loss] + + def get_subject_level_analysis(self): + """ Return a Nipype workflow describing the subject level analysis part of the pipeline """ + + # [INFO] The following part stays the same for all pipelines + + # Infosource Node - To iterate on subjects + info_source = Node( + IdentityInterface( + fields = ['subject_id', 'dataset_dir', 'results_dir', 'working_dir', 'run_list'], + dataset_dir = self.directories.dataset_dir, + results_dir = self.directories.results_dir, + working_dir = self.directories.working_dir, + run_list = self.run_list + ), + name='info_source', + ) + info_source.iterables = [('subject_id', self.subject_list)] + + # Templates to select files node + # [TODO] Change the name of the files depending on the filenames of results of preprocessing + templates = { + 'func': join( + self.directories.results_dir, + 'preprocess', + '_run_id_*_subject_id_{subject_id}', + 'complete_filename_{subject_id}_complete_filename.nii', + ), + 'event': join( + self.directories.dataset_dir, + 'sub-{subject_id}', + 'func', + 'sub-{subject_id}_task-MGT_run-*_events.tsv', + ) + } + + # SelectFiles node - to select necessary files + select_files = Node( + SelectFiles(templates, base_directory = self.directories.dataset_dir), + name = 'select_files' + ) + + # DataSink Node - store the wanted results in the wanted repository + data_sink = Node( + DataSink(base_directory = self.directories.output_dir), + name = 'data_sink' + ) + + # [INFO] This is the node executing the get_subject_infos_spm function + # Subject Infos node - get subject specific condition information + subject_infos = Node( + Function( + input_names = ['event_files', 'runs'], + output_names = ['subject_info'], + function = self.get_subject_infos, + ), + name = 'subject_infos', + ) + subject_infos.inputs.runs = self.run_list + + # [INFO] This is the node executing the get_contrasts function + # Contrasts node - to get contrasts + contrasts = Node( + Function( + input_names = ['subject_id'], + output_names = ['contrasts'], + function = self.get_contrasts, + ), + name = 'contrasts', + ) + + # [INFO] The following part has to be modified with nodes of the pipeline + + # [TODO] For each node, replace 'node_name' by an explicit name, and use it for both: + # - the name of the variable in which you store the Node object + # - the 'name' attribute of the Node + # [TODO] The node_function refers to a NiPype interface that you must import + # at the beginning of the file. + node_name = Node( + node_function, + name = 'node_name' + ) + + # [TODO] Add other nodes with the different steps of the pipeline + + # [INFO] The following part defines the nipype workflow and the connections between nodes + + subject_level_analysis = Workflow( + base_dir = self.directories.working_dir, + name = 'subject_level_analysis' + ) + # [TODO] Add the connections the workflow needs + # [INFO] Input and output names can be found on NiPype documentation + subject_level_analysis.connect([ + ( + info_source, + select_files, + [('subject_id', 'subject_id')] + ), + ( + info_source, + contrasts, + [('subject_id', 'subject_id')] + ), + ( + select_files, + subject_infos, + [('event', 'event_files')] + ), + ( + select_files, + node_name, + [('func', 'node_input_name')] + ), + ( + node_name, data_sink, + [('node_output_name', 'preprocess.@sym_link')] + ), + ]) + + # [INFO] Here we simply return the created workflow + return subject_level_analysis + + # [INFO] This function returns the list of ids and files of each group of participants + # to do analyses for both groups, and one between the two groups. + def get_subset_contrasts( + file_list, subject_list: list, participants_file: str + ): + """ + This function return the file list containing only the files belonging + to the subjects in the wanted group. + + Parameters : + - file_list : original file list selected by selectfiles node + - subject_list : list of subject IDs that are in the wanted group for the analysis + - participants_file: str, file containing participants characteristics + + Returns : + - equal_indifference_id : a list of subject ids in the equalIndifference group + - equal_range_id : a list of subject ids in the equalRange group + - equal_indifference_files : a subset of file_list corresponding to subjects + in the equalIndifference group + - equal_range_files : a subset of file_list corresponding to subjects + in the equalRange group + """ + equal_indifference_id = [] + equal_range_id = [] + equal_indifference_files = [] + equal_range_files = [] + + # Reading file containing participants IDs and groups + with open(participants_file, 'rt') as file: + next(file) # skip the header + for line in file: + info = line.strip().split() + if info[0][-3:] in subject_list and info[1] == 'equalIndifference': + equal_indifference_id.append(info[0][-3:]) + elif info[0][-3:] in subject_list and info[1] == 'equalRange': + equal_range_id.append(info[0][-3:]) + + for file in file_list: + sub_id = file.split('/') + if sub_id[-2][-3:] in equal_indifference_id: + equal_indifference_files.append(file) + elif sub_id[-2][-3:] in equal_range_id: + equal_range_files.append(file) + + return equal_indifference_id, equal_range_id, equal_indifference_files, equal_range_files + + def get_group_level_analysis(self): + """ + Return all workflows for the group level analysis. + + Returns; + - a list of nipype.WorkFlow + """ + + methods = ['equalRange', 'equalIndifference', 'groupComp'] + return [self.get_group_level_analysis_sub_workflow(method) for method in methods] + + def get_group_level_analysis_sub_workflow(self, method): + """ + Return a workflow for the group level analysis. + + Parameters: + - method: one of 'equalRange', 'equalIndifference' or 'groupComp' + + Returns: + - group_level_analysis: nipype.WorkFlow + """ + # [INFO] The following part stays the same for all preprocessing pipelines + + # Infosource node - iterate over the list of contrasts generated + # by the subject level analysis + info_source = Node( + IdentityInterface( + fields = ['contrast_id', 'subjects'], + subjects = self.subject_list + ), + name = 'info_source', + ) + info_source.iterables = [('contrast_id', self.contrast_list)] + + # Templates to select files node + # [TODO] Change the name of the files depending on the filenames + # of results of first level analysis + templates = { + 'contrast': join( + self.directories.results_dir, + 'subject_level_analysis', + '_subject_id_*', + 'complete_filename_{contrast_id}_complete_filename.nii', + ), + 'participants': join( + self.directories.dataset_dir, + 'participants.tsv' + ) + } + select_files = Node( + SelectFiles( + templates, + base_directory = self.directories.results_dir, + force_list = True + ), + name = 'select_files', + ) + + # Datasink node - to save important files + data_sink = Node( + DataSink(base_directory = self.directories.output_dir), + name = 'data_sink', + ) + + # Contrasts node - to select subset of contrasts + sub_contrasts = Node( + Function( + input_names = ['file_list', 'method', 'subject_list', 'participants_file'], + output_names = [ + 'equalIndifference_id', + 'equalRange_id', + 'equalIndifference_files', + 'equalRange_files', + ], + function = self.get_subset_contrasts, + ), + name = 'sub_contrasts', + ) + sub_contrasts.inputs.method = method + + # [INFO] The following part has to be modified with nodes of the pipeline + + # [TODO] For each node, replace 'node_name' by an explicit name, and use it for both: + # - the name of the variable in which you store the Node object + # - the 'name' attribute of the Node + # [TODO] The node_function refers to a NiPype interface that you must import + # at the beginning of the file. + node_name = Node( + node_function, + name = 'node_name' + ) + + # [INFO] The following part defines the nipype workflow and the connections between nodes + + # Compute the number of participants used to do the analysis + nb_subjects = len(self.subject_list) + + # Declare the workflow + group_level_analysis = Workflow( + base_dir = self.directories.working_dir, + name = f'group_level_analysis_{method}_nsub_{nb_subjects}' + ) + group_level_analysis.connect( + [ + ( + info_source, + select_files, + [('contrast_id', 'contrast_id')], + ), + (info_source, sub_contrasts, [('subjects', 'subject_list')]), + ( + select_files, + sub_contrasts, + [('contrast', 'file_list'), ('participants', 'participants_file')], + ), # Complete with other links between nodes + ] + ) + + # [INFO] Here we define the contrasts used for the group level analysis, depending on the + # method used. + if method in ('equalRange', 'equalIndifference'): + contrasts = [('Group', 'T', ['mean'], [1]), ('Group', 'T', ['mean'], [-1])] + + elif method == 'groupComp': + contrasts = [ + ('Eq range vs Eq indiff in loss', 'T', ['Group_{1}', 'Group_{2}'], [1, -1]) + ] + + # [INFO] Here we simply return the created workflow + return group_level_analysis