-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathzernike.py
253 lines (181 loc) · 7.61 KB
/
zernike.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import os.path
import numpy as np
import numpy.ma as ma # Masked array
from scipy.misc import factorial as fac
def zernike_rad(m, n, rho):
"""
Calculate the radial component of Zernike polynomial (m, n)
given a grid of radial coordinates rho.
"""
#Todo: This could be sped up A LOT by caching all this factorial stuff
if (n < 0 or m < 0 or abs(m) > n):
raise ValueError
if ((n - m) % 2):
return rho*0.0
pre_fac = lambda k: (-1.0) ** k * fac(n - k) / (fac(k) * fac((n + m) / 2.0 - k) * fac((n - m) / 2.0 - k))
return np.sum(pre_fac(k) * rho**(n - 2.0 * k) for k in xrange((n - m) / 2 + 1))
def zernike(m, n, rho, phi):
"""
Calculate Zernike polynomial (m, n) given a grid of radial
coordinates rho and azimuthal coordinates phi.
"""
if (m > 0): return zernike_rad(m, n, rho) * np.cos(m * phi)
#if (m < 0): return zernike_rad(-m, n, rho) * np.sin(-m * phi)
if (m < 0): return zernike_rad(-m, n, rho) * np.sin(m * phi)
return zernike_rad(0, n, rho)
def zernikel(j, rho, phi):
"""
Calculate Zernike polynomial with Noll coordinate j given a grid of radial
coordinates rho and azimuthal coordinates phi.
"""
(n, m) = noll_to_nm(j)
return zernike(m, n, rho, phi)
def noll_to_nm(j):
"""
Convert from noll index j to n, m
This is NOT actually the noll index, as can be seen from https://oeis.org/A176988
but rather the natural arrangement
"""
n = 0
while (j > n):
n += 1
j -= n
m = -n + 2 * j
return (n, m)
def nm_to_noll(n, m):
"""
Inverse of noll_to_nm. As with that function not actually noll index, but works for now.
"""
j = num_coeffs(n-1)
m_list = get_m_indices(n)
j += np.where(m_list == m)[0][0]
return j
def get_m_indices(n):
"""
m indices for matching n in order of natural (triangle) arrangement.
"""
m = np.arange(-n, n+1, 2)
return m
def num_coeffs(n_max):
"""The number of coefficients needed for a certain maximum n."""
return np.sum(np.arange(n_max + 2))
def num_mags(n_max):
n_mags = 2 * np.sum(np.arange((n_max + 4)/2))
if n_max % 2 == 0:
n_mags -= ((n_max/2) + 1)
return n_mags
def cov_mat_inv(Z):
"""Returns inverse cov matrix, used to set magnitude of all polynomials the same. (I think)"""
# Both of these give slightly different results... why?!
#cov_mat = np.linalg.pinv(np.array([[np.sum(Z_i * Z_j) for Z_i in zern_list] for Z_j in zern_list]))
return np.linalg.pinv(np.dot(Z, Z.T))
def reconstruct(coeffs, zern_list):
""" Reconstruct the image using square polynomials and coefficients. """
return sum(c * Z for (c, Z) in zip(coeffs, zern_list))
def get_magnitudes(c):
magnitude = []
for j, coeff in enumerate(c):
n, m = noll_to_nm(j)
if m == 0:
magnitude.append(c[j])
elif m < 0:
j_match = nm_to_noll(n, -m)
magnitude.append(np.linalg.norm(np.array([c[j], c[j_match]])))
return np.array(magnitude)
class Zernike(object):
"""
A class to repeatedly access some basic radial polynomials at a given resolution.
"""
# I don't think we need height and width as always the same
def __init__(self, d, n_max, poly_cache_folder="data/zernpoly"):
"""
Keyword arguments:
d -- the diameter of the zernike function (d = w = h)
n_max -- the numbers of harmonics?
"""
self.d = d
self.poly_cache_folder = poly_cache_folder
x_range = np.linspace (-1, 1, d)
xx, yy = np.meshgrid(x_range, x_range)
grid_rho = (xx ** 2 + yy ** 2) ** 0.5
grid_phi = np.arctan2(xx, yy)
self.grid_mask = grid_rho <= 1
self.rho = np.reshape(grid_rho[self.grid_mask], -1)
self.phi = np.reshape(grid_phi[self.grid_mask], -1)
coeff_count = num_coeffs(n_max)
self.pixels_per_poly = np.sum(self.grid_mask)
self.Z = np.zeros([coeff_count, self.pixels_per_poly])
self.m = np.zeros(coeff_count)
self.n = np.zeros(coeff_count)
for j in range(coeff_count):
self.n[j], self.m[j] = noll_to_nm(j)
self.epsilon = np.ones(coeff_count)
self.epsilon[self.m == 0] = 2.0
# Just a hacky way of caching previously calculated polynomials
j = 0
for n in range(n_max + 1):
m_list = get_m_indices(n)
m_count = len(m_list)
cache_file = self.get_cache_file_name(n) # Try load from backup
if os.path.isfile(cache_file):
data = np.load(cache_file)
self.Z[j:j+m_count, :] = data['N']
else:
N = self.zernike_by_rad_deg(n, m_list)
self.Z[j:j+m_count, :] = N
print "saving to", cache_file
np.savez(cache_file, N=N)
j += m_count
# I'M NOT SURE THIS IS CORRECT
# First option leads to very large coeffs!
#self.zern_cov_inv = np.linalg.pinv(np.cov(self.Z))
self.zern_cov_inv = cov_mat_inv(self.Z)
def _project_to_square(self, vals):
"""Reprojects the values back to a square image"""
X = np.zeros([self.d ** 2])
X[np.reshape(self.grid_mask, -1)] = vals
return np.reshape(X, (self.d, self.d))
def zernike_by_rad_deg(self, n, m_list):
"""Return Zernike polynomials by radial degree n"""
X = np.zeros([len(m_list), self.pixels_per_poly])
for i, m in enumerate(m_list):
z = zernike(m, n, self.rho, self.phi)
X[i, :] = z
return X
def reconstruct(self, c):
"""Reconstruct an image using coefficients"""
j = c.size
x = np.dot(self.Z[:j,:].T, c)
I = self._project_to_square(x)
return ma.masked_array(I, mask=np.logical_not(self.grid_mask))
def reconstruct_binary(self, c, threshold=None):
"""Create a binary image using input of coefficients"""
if threshold is None:
threshold = c[0]
I = self.reconstruct(c)
return I > threshold
def calc_coeff(self, x, j):
"""Calculate a single coefficient"""
return np.dot(self.zern_cov_inv[j, :], np.dot(self.Z[j, :], x))
def calc_coeffs(self, x, j_max=None):
"""Calculate the coefficients of vectorised masked image x"""
#if j_max is None:
# j_max = self.Z.shape[0]
#return np.dot(self.zern_cov_inv[0:j_max, 0:j_max], np.dot(self.Z[0:j_max, :], x))
if j_max is None:
j_max = self.Z.shape[0]
return (2 * self.n[0:j_max] + 2) / (self.epsilon[0:j_max] * np.pi) * np.dot(self.Z[0:j_max, :], x)
def calc_img_coeffs(self, I, j_max=None):
"""Calculate coefficients of an image passed in"""
return self.calc_coeffs(I[self.grid_mask].reshape(-1), j_max)
def calc_img_mags(self, I, j_max=None):
"""Return magnitudes of image (rotation invariant)"""
mags = get_magnitudes(self.calc_img_coeffs(I, j_max))
return mags
def view_polynomial(self, j):
"""Visualise a single polynomial"""
P = self._project_to_square(self.Z[j,:])
return ma.masked_array(P, mask=np.logical_not(self.grid_mask))
def get_cache_file_name(self, n):
"""The filename to store all radial basis functions with certain size and n"""
return '%s/zernike%s_%s.npz' % (self.poly_cache_folder, self.d, n)