- All files can be downloaded from here.
- If you want only one of SMPL and SMPLX data, you can ignore the other one.
- This repo requires only SMPLX data, while Pose2Pose branch requires only SMPL data.
- This code will dump SMPL/SMPLX parameters in camera-centered coordinate system and camera parameters at
smpl_params_cam/smplx_params_cam
andcam_params
folders, respectively, in $DATASET_PATH. Also, it will generateAGORA_train_SMPL.json
,AGORA_validation_SMPL.json
,AGORA_train_SMPLX.json
, andAGORA_validation_SMPLX.json
in $DATASET_PATH. - For the SMPL data, 1) download and unzip
smpl_gt.zip
,train_SMPL.zip
, andvalidation_SMPL.zip
and 2) runpython agora2coco_smpl.py --dataset_path $DATASET_PATH
. - For the SMPLX data, 1) download and unzip
smplx_gt.zip
,train_SMPLX.zip
andvalidation_SMPLX.zip
and 2) runpython agora2coco_smplx.py --dataset_path $DATASET_PATH
. - $DATASET_PATH denotes AGORA dataset path.
- This code will prepare 1280x720 image files.
- Download and unzip 1280x720 image files.
- Then, make
images_1280x720
folder in AGORA dataset path. - For the $i$th zip file of training set, make
train_$i$
folder and move all image files to that folder. For example, maketrain_0
folder at AGORA dataset path and move all image files fromtrain_images_1280x720_0.zip
to that folder. - For the images of validation and test sets, make
validation
andtest
folders and move all images files to corresponding folders.
- This code will prepare 3840x2160 image files.
- Do the same process of 1280x720 image files
- As the image resolution is too high, you need to crop and resize humans to prevent the dataloader from being stuck.
- To this end, run
python crop_and_resize_4k_images.py --dataset_path $DATASET_PATH --out_height 512 --out_width 384
. $DATASET_PATH denotes AGORA dataset path.
- Download human detection results on test set from here.
- The human detection results are from YOLO v5.
${DATASET_PATH}
|-- AGORA_train_SMPL.json
|-- AGORA_validation_SMPL.json
|-- AGORA_train_SMPLX.json
|-- AGORA_validation_SMPLX.json
|-- AGORA_test_bbox.json
|-- smpl_params_cam
| |-- train_0
| |-- train_1
| |-- train_2
| |-- train_3
| |-- train_4
| |-- train_5
| |-- train_6
| |-- train_7
| |-- train_8
| |-- train_9
| |-- validation
|-- smplx_params_cam
| |-- train_0
| |-- train_1
| |-- train_2
| |-- train_3
| |-- train_4
| |-- train_5
| |-- train_6
| |-- train_7
| |-- train_8
| |-- train_9
| |-- validation
|-- cam_params
| |-- train_0
| |-- train_1
| |-- train_2
| |-- train_3
| |-- train_4
| |-- train_5
| |-- train_6
| |-- train_7
| |-- train_8
| |-- train_9
| |-- validation
|-- images_1280x720
| |-- train_0
| |-- train_1
| |-- train_2
| |-- train_3
| |-- train_4
| |-- train_5
| |-- train_6
| |-- train_7
| |-- train_8
| |-- train_9
| |-- validation
| |-- test
|-- images_3840x2160
| |-- train_0
| |-- train_0_crop
| |-- train_1
| |-- train_1_crop
| |-- train_2
| |-- train_2_crop
| |-- train_3
| |-- train_3_crop
| |-- train_4
| |-- train_4_crop
| |-- train_5
| |-- train_5_crop
| |-- train_6
| |-- train_6_crop
| |-- train_7
| |-- train_7_crop
| |-- train_8
| |-- train_8_crop
| |-- train_9
| |-- train_9_crop
| |-- validation
| |-- validation_crop
| |-- test
| |-- test_crop