-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathfont_ds_generate_script.py
143 lines (114 loc) · 4.51 KB
/
font_ds_generate_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import sys
import traceback
import pickle
import os
import concurrent.futures
from tqdm import tqdm
import time
from font_dataset.font import load_fonts, DSFont
from font_dataset.layout import generate_font_image, TextSizeTooSmallException
from font_dataset.text import CorpusGeneratorManager, UnqualifiedFontException
from font_dataset.background import background_image_generator
global_script_index = int(sys.argv[1])
global_script_index_total = int(sys.argv[2])
print(f"Mission {global_script_index} / {global_script_index_total}")
num_workers = 32
cjk_ratio = 3
train_cnt = 100
val_cnt = 5
test_cnt = 30
train_cnt_cjk = int(train_cnt * cjk_ratio)
val_cnt_cjk = int(val_cnt * cjk_ratio)
test_cnt_cjk = int(test_cnt * cjk_ratio)
dataset_path = "./dataset/font_img"
os.makedirs(dataset_path, exist_ok=True)
unqualified_log_file_name = f"unqualified_font_{time.time()}.txt"
runtime_exclusion_list = []
fonts, exclusion_rule = load_fonts()
corpus_manager = CorpusGeneratorManager()
images = background_image_generator()
def add_exclusion(font: DSFont, reason: str, dataset_base_dir: str, i: int, j: int):
print(f"Excluded font: {font.path}, reason: {reason}")
runtime_exclusion_list.append(font.path)
with open(unqualified_log_file_name, "a+") as f:
f.write(f"{font.path} # {reason}\n")
for jj in range(j + 1):
image_file_name = f"font_{i}_img_{jj}.jpg"
label_file_name = f"font_{i}_img_{jj}.bin"
image_file_path = os.path.join(dataset_base_dir, image_file_name)
label_file_path = os.path.join(dataset_base_dir, label_file_name)
if os.path.exists(image_file_path):
os.remove(image_file_path)
if os.path.exists(label_file_path):
os.remove(label_file_path)
def generate_dataset(dataset_type: str, cnt: int):
dataset_base_dir = os.path.join(dataset_path, dataset_type)
os.makedirs(dataset_base_dir, exist_ok=True)
def _generate_single(args):
i, j, font = args
print(
f"Generating {dataset_type} font: {font.path} {i} / {len(fonts)}, image {j}"
)
if exclusion_rule(font):
print(f"Excluded font: {font.path}")
return
if font.path in runtime_exclusion_list:
print(f"Excluded font: {font.path}")
return
while True:
try:
image_file_name = f"font_{i}_img_{j}.jpg"
label_file_name = f"font_{i}_img_{j}.bin"
image_file_path = os.path.join(dataset_base_dir, image_file_name)
label_file_path = os.path.join(dataset_base_dir, label_file_name)
# detect cache
if os.path.exists(image_file_path) and os.path.exists(label_file_path):
return
im = next(images)
im, label = generate_font_image(
im,
font,
corpus_manager,
)
im.save(image_file_path)
pickle.dump(label, open(label_file_path, "wb"))
return
except UnqualifiedFontException as e:
traceback.print_exc()
add_exclusion(font, "unqualified font", dataset_base_dir, i, j)
return
except TextSizeTooSmallException as e:
traceback.print_exc()
continue
except Exception as e:
traceback.print_exc()
add_exclusion(font, f"other: {repr(e)}", dataset_base_dir, i, j)
return
work_list = []
# divide len(fonts) into 64 parts and choose the third part for this script
for i in range(
(global_script_index - 1) * len(fonts) // global_script_index_total,
global_script_index * len(fonts) // global_script_index_total,
):
font = fonts[i]
if font.language == "CJK":
true_cnt = cnt * cjk_ratio
else:
true_cnt = cnt
for j in range(true_cnt):
work_list.append((i, j, font))
# with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor:
# _ = list(
# tqdm(
# executor.map(_generate_single, work_list),
# total=len(work_list),
# leave=True,
# desc=dataset_type,
# miniters=1,
# )
# )
for i in tqdm(range(len(work_list))):
_generate_single(work_list[i])
generate_dataset("train", train_cnt)
generate_dataset("val", val_cnt)
generate_dataset("test", test_cnt)