-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPolarization_Imbalance.nb
1888 lines (1835 loc) · 78.6 KB
/
Polarization_Imbalance.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 78477, 1880]
NotebookOptionsPosition[ 76347, 1817]
NotebookOutlinePosition[ 76704, 1833]
CellTagsIndexPosition[ 76661, 1830]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*",
RowBox[{"Thermaldynamical", " ", "Potential"}], "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"ClearAll", "[", "\"\<Global`*\>\"", "]"}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"t", "=", "1"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"r", "=", "0.5"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]", "[", "k_", "]"}], ":=",
RowBox[{"k", "^", "2"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]n", "[",
RowBox[{"k_", ",", "r_"}], "]"}], ":=",
RowBox[{
RowBox[{"\[Epsilon]", "[", "k", "]"}], "*",
RowBox[{
RowBox[{"(",
RowBox[{"r", "-", "1"}], ")"}], "/",
RowBox[{"(",
RowBox[{"r", "+", "1"}], ")"}]}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Xi]", "[",
RowBox[{"k_", ",", "\[Mu]_"}], "]"}], ":=",
RowBox[{
RowBox[{"\[Epsilon]", "[", "k", "]"}], "-", "\[Mu]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Ek", "[",
RowBox[{"k_", ",", "\[Mu]_", ",", "\[CapitalDelta]_"}], "]"}], ":=",
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{
RowBox[{"\[Xi]", "[",
RowBox[{"k", ",", "\[Mu]"}], "]"}], "^", "2"}], "+",
RowBox[{"\[CapitalDelta]", "^", "2"}]}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"E1", "[",
RowBox[{
"k_", ",", "\[Mu]_", ",", "\[CapitalDelta]_", ",", "h_", ",", "r_"}],
"]"}], ":=",
RowBox[{
RowBox[{"Ek", "[",
RowBox[{"k", ",", "\[Mu]", ",", "\[CapitalDelta]"}], "]"}], "-",
RowBox[{"(",
RowBox[{"h", "-",
RowBox[{"\[Epsilon]n", "[",
RowBox[{"k", ",", "r"}], "]"}]}], ")"}]}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"E2", "[",
RowBox[{
"k_", ",", "\[Mu]_", ",", "\[CapitalDelta]_", ",", "h_", ",", "r_"}],
"]"}], ":=",
RowBox[{
RowBox[{"Ek", "[",
RowBox[{"k", ",", "\[Mu]", ",", "\[CapitalDelta]"}], "]"}], "+",
RowBox[{"(",
RowBox[{"h", "-",
RowBox[{"\[Epsilon]n", "[",
RowBox[{"k", ",", "r"}], "]"}]}], ")"}]}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"T1", "[",
RowBox[{
"k_", ",", "\[Mu]_", ",", "\[CapitalDelta]_", ",", "h_", ",", "r_"}],
"]"}], ":=",
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"E1", "[",
RowBox[{
"k", ",", "\[Mu]", ",", "\[CapitalDelta]", ",", "h", ",", "r"}],
"]"}], "<", "0"}], ",", "1", ",", "0"}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"T2", "[",
RowBox[{
"k_", ",", "\[Mu]_", ",", "\[CapitalDelta]_", ",", "h_", ",", "r_"}],
"]"}], ":=",
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"E2", "[",
RowBox[{
"k", ",", "\[Mu]", ",", "\[CapitalDelta]", ",", "h", ",", "r"}],
"]"}], "<", "0"}], ",", "1", ",", "0"}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[CapitalOmega]0", "[",
RowBox[{"\[Mu]_", ",", "\[CapitalDelta]_"}], "]"}], ":=",
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[CapitalDelta]", "^", "2"}], "/", "2"}], "+",
RowBox[{
RowBox[{"k", "^", "2"}],
RowBox[{"\[Xi]", "[",
RowBox[{"k", ",", "\[Mu]"}], "]"}]}], "-",
RowBox[{
RowBox[{"k", "^", "2"}], " ",
RowBox[{"Ek", "[",
RowBox[{"k", ",", "\[Mu]", ",", "\[CapitalDelta]"}], "]"}]}]}], ",",
RowBox[{"{",
RowBox[{"k", ",", "0", ",", "10"}], "}"}]}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[CapitalOmega]1", "[",
RowBox[{"\[Mu]_", ",", "\[CapitalDelta]_", ",", "h_", ",", "r_"}],
"]"}], ":=",
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{
RowBox[{"k", "^", "2"}],
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"E1", "[",
RowBox[{
"k", ",", "\[Mu]", ",", "\[CapitalDelta]", ",", "h", ",", "r"}],
"]"}], "*",
RowBox[{"T1", "[",
RowBox[{
"k", ",", "\[Mu]", ",", "\[CapitalDelta]", ",", "h", ",", "r"}],
"]"}]}], "+",
RowBox[{
RowBox[{"E2", "[",
RowBox[{
"k", ",", "\[Mu]", ",", "\[CapitalDelta]", ",", "h", ",", "r"}],
"]"}], "*",
RowBox[{"T2", "[",
RowBox[{
"k", ",", "\[Mu]", ",", "\[CapitalDelta]", ",", "h", ",", "r"}],
"]"}]}]}], ")"}]}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}]}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[CapitalOmega]", "[",
RowBox[{
"\[Mu]_", ",", "\[CapitalDelta]_", ",", "h_", ",", "r_", ",", "t_"}],
"]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"\[CapitalDelta]", "^", "2"}]}], " ",
RowBox[{"t", "/",
RowBox[{"(",
RowBox[{"8", " ", "Pi"}], ")"}]}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"1", "/",
RowBox[{"(",
RowBox[{"2", " ",
RowBox[{"Pi", "^", "2"}]}], ")"}]}], ")"}],
RowBox[{"(",
RowBox[{
RowBox[{"\[CapitalOmega]0", "[",
RowBox[{"\[Mu]", ",", "\[CapitalDelta]"}], "]"}], "+",
RowBox[{"\[CapitalOmega]1", "[",
RowBox[{"\[Mu]", ",", "\[CapitalDelta]", ",", "h", ",", "r"}],
"]"}]}], ")"}]}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Mu]0", "=", "1"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"h0", "=", "1.44"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"tt", "=",
RowBox[{
RowBox[{"TextString", "[", "t", "]"}], "//", "InputForm"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"\[CapitalOmega]", "[",
RowBox[{
"\[Mu]0", ",", "\[CapitalDelta]", ",", "h0", ",", "t", ",", "r"}],
"]"}], ",",
RowBox[{"{",
RowBox[{"\[CapitalDelta]", ",", "0", ",", "5"}], "}"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<\[CapitalDelta]/\!\(\*SubscriptBox[\(\[Epsilon]\), \(F\)]\)\>\"",
",", "\"\<\[CapitalOmega]/\!\(\*SubscriptBox[\(\[Epsilon]\), \(F\)]\)\
\>\""}], "}"}]}]}], "]"}]}]}]], "Input",
CellChangeTimes->{
3.7269542414870167`*^9, 3.726954289761394*^9, 3.7269543545817623`*^9, {
3.726954415685233*^9, 3.726954427577857*^9}, {3.7269544783508673`*^9,
3.726954489760225*^9}, {3.7269545336840067`*^9, 3.7269546377176313`*^9}, {
3.7269547451533394`*^9, 3.7269547520998187`*^9}, {3.7269603754580097`*^9,
3.726960404560393*^9}, {3.726960745426305*^9, 3.726960795891465*^9}, {
3.7269608322260823`*^9, 3.7269609055480623`*^9}, {3.726960954765932*^9,
3.726961018087312*^9}, {3.726965796497113*^9, 3.7269658043890924`*^9}, {
3.726965856073502*^9, 3.726965864749608*^9}, 3.726965912904624*^9, {
3.7269659603517914`*^9, 3.726965985667118*^9}, {3.726966034177102*^9,
3.7269660581298366`*^9}, {3.726966139180359*^9, 3.7269661592306366`*^9}, {
3.726966220732222*^9, 3.726966260039734*^9}, {3.7269662938696594`*^9,
3.7269663108378143`*^9}, {3.726966506106024*^9, 3.7269665097056336`*^9},
3.7269665413266935`*^9, {3.726966597439905*^9, 3.726966597741727*^9}, {
3.726967008284273*^9, 3.726967044554946*^9}, {3.726979424199822*^9,
3.7269794495030727`*^9}, {3.726979486045155*^9, 3.726979523715437*^9}, {
3.726979593600555*^9, 3.726979613095695*^9}, {3.726979740586712*^9,
3.726979756688603*^9}, {3.726980314489049*^9, 3.726980314575759*^9},
3.726980349127324*^9, 3.726980398893853*^9, 3.726980436075838*^9, {
3.726980570749852*^9, 3.7269806347701807`*^9}, 3.72698066712217*^9,
3.726981020091819*^9, {3.726981099001816*^9, 3.726981219873877*^9}, {
3.726981272890937*^9, 3.726981276534831*^9}, {3.726981337588417*^9,
3.726981348051647*^9}, 3.7269814535357533`*^9, 3.726981506797289*^9, {
3.726981544972315*^9, 3.7269815725146017`*^9}, {3.7269816068251553`*^9,
3.726981623784423*^9}, {3.726981666359192*^9, 3.726981724020347*^9}, {
3.726981754467044*^9, 3.7269818529998207`*^9}, {3.7269818857819433`*^9,
3.726981994873156*^9}, 3.726982033344253*^9, {3.726982074845752*^9,
3.726982075293564*^9}, {3.726982232656658*^9, 3.72698225325461*^9}, {
3.7269831192840767`*^9, 3.726983151529418*^9}, 3.726983189752062*^9, {
3.7269832318303623`*^9, 3.7269832321898212`*^9}, {3.7269834508931713`*^9,
3.726983468732081*^9}, {3.7269835002431297`*^9, 3.72698352188993*^9}, {
3.726983595127552*^9, 3.726983623261921*^9}, {3.7269838574047327`*^9,
3.7269838607762623`*^9}, {3.726984054553896*^9, 3.7269841801035*^9}, {
3.7269842237502003`*^9, 3.7269842570088587`*^9}, {3.726984294883563*^9,
3.726984296867299*^9}, {3.726984344297522*^9, 3.726984358192872*^9}, {
3.727038869081274*^9, 3.727038925660977*^9}},
ExpressionUUID -> "b265d892-af2f-4fc3-80c1-192703723200"],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"NIntegrate", "::", "ncvb"}], "MessageName"],
RowBox[{
":", " "}], "\<\"NIntegrate failed to converge to prescribed accuracy after \
\[NoBreak]\\!\\(9\\)\[NoBreak] recursive bisections in \[NoBreak]\\!\\(k\\)\
\[NoBreak] near \[NoBreak]\\!\\({k}\\)\[NoBreak] = \
\[NoBreak]\\!\\({1.015469583594676`}\\)\[NoBreak]. NIntegrate obtained \
\[NoBreak]\\!\\(-0.2666668691499098`\\)\[NoBreak] and \
\[NoBreak]\\!\\(3.011310941154041`*^-6\\)\[NoBreak] for the integral and \
error estimates. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\
\"Link\\\", ButtonFrame->None, \
ButtonData:>\\\"paclet:ref/message/NIntegrate/ncvb\\\", ButtonNote -> \
\\\"NIntegrate::ncvb\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{
3.7269842983843737`*^9, 3.726984358427223*^9, {3.727038869722443*^9,
3.727038925879382*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwd13k8lF8XAPDZjJSEoVQUJWmTrVLJvRWSIrQhyb5GJSWSLdmlUEoIISUM
84wsw80SUbZIikoUsmWbIet7f+9fPt/Pecw95z73nDsjY3XJyJZCIpHSyCTS
f38TfazoSjY3Nbgp37cZEByUZDq076y0CdhgwhbQwf6iF+YmLe0Ics02fVPG
Vt7T+GxpuxuoWrJ0jSi2xxETIT5pT6CUI3W3l8VBnLM9NxbtfYHXyfONTGwy
UTA29zkA3D2QYHgFW5YzKzczeweA9C43eWztKmg2tT4UZAXaBrTlc5DDhzv3
Jw9HgGUgv+omdnhrXfWYfRRoHd5+XQL77Ai/z5TWfXD23qcPr/Lw824vJXif
o0GEov8/NWxP3nHWpGMsgDEf5UuZHBTm9VdvYvYBMOLG396LnR2gent0/WNg
elLYcG0uB5XRP0v9zYsHQuJ6S/xzOKgpzLNw+HACsNGSdP+RzUHj0WXDA/ZP
AePd8LegVxwUEK5YNemdDFKlm0WasvDn1/uLTGqlgIHoIjtR7ARD2Vfjn1PB
F9ui5oAXHJQWc+3fWPIzcMrdUCwvE6//qVp7zDENFHp5NLQ/x+ubOP78O5sO
zk6K8YtncNBPy5yVw+tfAJfLr90PpXLQwLNF66H+F6DO/nuMRgrO57dB3mDe
S2Cc7RarmsxBNKeJYwOHX4GMmO/mK5I4SM5Nzb/PPhcwTR+G+z7moN0Hf3JH
P+eDIEOl9jNRHLSvOzThsjoLXCj40PgvkoM0bisfHk1mgemqvMdxERx05O3t
e38dCTD2gNZYGcpBxkflto3MsoFOjEXdj9scdNPQ2WJwfRHQnLu0WcGDgxZu
7179I6IIaBf+DTO/xkF+BeSPH/8VAZG+noDQqxwUuPbR4eKWYuDc9/ps4yUO
uvu7Si40mAOuKe1LWevAQcme64bl/iKw5LtrUtlZDupp6ldXulAJ4v4eumCv
gs+Lk/7qrAeVoKXiD3VWkYPsqARX9kMlENq1TiNMgYP6d/nmSOytAn2cnZFP
tnDQULy4NInxFuRvU9IJW89BPJtD1MbqapDj1HI3cSkHCfx7UntRoQ6YMS6c
r/xWgtSCv3jpWtaBJUaWZP6OEuQgvmq7fGwdmJP97XCkvQRVK0Xf7flXB8pl
DKPLPpagQKeQk6Zv34OMw1qcoJoSROp0/3bErB6Ud0ZW+DNL0M0fGTdEtJoA
nIoiqfuVoCsVvhFDbi3gFnOPys1VJWhaJDa7I7wFlDIHwiXFSpCPZWZDXVoL
uOI5El0iXIIiSM3CL9paQFaaYcG4QAnK1NjwwHZfK0gn3sZrzRWjruKqxO/k
T6CZOM3w6ypGBiyB3KZ7beCTnBTV5HkxUkiLaSZyvgBtNXEXqZ3F6Le+g+QP
tS4wwh52CWcUobg1QVIpFj0grkzNrJn7Gu11K8ylfugF8d+29pXkFaDKz08M
Lm0eAG5fr3CVXNhIKWJBQ+LoMCioTWrdDwl0pHffD8Wzo0BttNc3jMZCfTsK
tCaHxsB6D5lVmeN5aMMtF9ttE2NA+OipqIKRPGT2QfaO1b8xsGFTlEPNQB5q
coqpauIbB5NuQ0aj3Xmo+Pnlw9nrxoHYTav4Cy15KEJm20E7g3Hwa3r4WSGR
h5TEk9XbWeMgNKKy4KZnHrpoc9ZsRfE4cPegjXZdy0MZLCFv7TfjIEP1Pjjq
lofWGN0qIT6Mg8TclH0bnfMQLcp03/3f48DxeozRvFkealsirqa7agKQnDPR
iYN56OZcqArHawKIXn7yM1EwDzW4W8d6+U+Ayk1UZQWBPCQ9rM5VC5kAlk9f
KlTy5aGqb38L2A8mwPf5ttOzC0wkiE7vy2VOgLNS6/3Tx5goyV/mYGrvBHi5
z7J54DMTjf6bSbEYngA9ng5/61qZ6JBbK2X95AQYLHznxGxmoj6r4Kon5Emw
z2/Vy/D3TKSoOXzkgeQkCFp6KCMQMVE5vUg/xGgSMEVNhsIzmUjMNzpX22QS
tFM+ddakM5HdlLMwn8UkkJNQXxB4xkRL+9d99HeZBNI/nwulJDKRUW3g6Zsh
k0Cxef1yyRgm+hVuYOZaNgl0LE9fOunLRLtpW0u3v50EGTYVVf+8mSjEm7pu
8P0kaFOVMHjuxUQ7XAp+2H+ZBE2/k4wkrjPRdX1Ja8vJSQCFBNafcmEifpF+
x1NbueBo4ViO5nkm4gWbaT1V5IJ6IGUffI6JeheapAd2cwFTYzC02YSJqoeK
PvsexvEPChe8zzBR0LtwrSwzLuBPWhOhYIA/H5BkeFZcsNvn9dccfVxfgfsc
dOQCxS3fD+zRYyLttPOstmtc8Mh35VMLXSai++2UoURxgc/cr+sSWnh93rO5
4w+4IM7bTLjzMF7fRaI97gkXrB/pCMo8hNc/R47akckFNhe8vcwgExV8vOZ0
I4cLNCIllDQBE2UcHdCqJLig2Ltizy4NnN+eljnjci64sOjMVFHH+eUcaX9W
wwUFJoJWB/fj/DZxWCP1XPDDQbjHeB/Oj5HuFPiVC7yQRWe6Gt7fsNXajV14
f+ZYTzr2MJEc+a7Mmj4u2KQQU7gWm/73envuBBd8vEdPL9mF87cdZM3844Jn
2a+q1mL3dl6I0iLxgFjzpu4gVSZqO9nqdI/OA7J7P8nPq+B66nS0OwR5oL01
/q0PdsHBUhk5Bg94v/vTuww7o1Bp/vJqHugr/slJU2aihzsz2kvW84C1h5Pn
UeygjDUEXY4HqlIMDWaUcH1SUVGG23ng+IGLHq+x7WKpzgnKPFCxpljOH/vM
shvafWo8IDoR+egstnbAkIwy4IF/tkUC+7F3/7OY99biATfn0qJt2HKXP7XX
HOOB01qkwS3YK/uOEqJGPKDQK9CzC5tuXhZ13pgHfKerB05g81qVnTPNeeCK
Zav+DezeY8+1J2x4AES1XsjFbqtYu0HDmQccHRrduNjVe+/Nh1zhgTr55J+6
uJ4CJu1LiwcPaHZfWcbEztjsSazz4YEH7idOb8L78TBpOMoxkAd2rqvdmoUd
JG7lTITxAPMje+Eg3t/rEW3ai/d4YFxY7PgAth312AbdOB7gqxeLS8Pv44wX
mo9N5IFXwmddr+zG9Y+pfPnxjAds5qwvGuL3udshk9j6kgdUw732auH3L/dD
8t41Jg+oPauM1NvLRHz1fEeWlfKA+x2N5U/x+RF0SbD+VskDKTN/ePQDuL+X
q/jl1vFAgtbu0HB8/iSzaxP8m3lgb9FnewV8XmX1LIpOtvOArrKh79hBJto+
zPu06QcPdKUoSX3G5101MnJ86jcP2Fm5iXfjftCsL96WMMED8T6yGR64X467
GOq4zvAAz3GwZznup1PL+20geQr80Rb40nOCicyyffxFl0yB2//ME0ROMpG1
nnjSL6EpUJSauuwT7len4aziAvEpEKKZ0pRjykRukYc+h0hOgSuVwf7B5kwU
UH9JeMfWKTCddyZtlx0ThbnQdywqToHxn7/EljkxUfTyxKPNe6ZAh2aG6w88
P1L16gKuaeH48IqOwGt43tXLckstpsA25rPAikAmIjV8+aIfNwVqM90Dl+D5
NtuQfTH6yjSYvt4he3B1Hvp9Nmf1unUzoEWT7TaP75+DIa4u77JngXuw2CmZ
rHz0YKFQ4PCFeRClSZ5ZPMdCgpvfuj6wnQerZxNu2ZizUOCJ5pY+53kAEvwe
1liwkFvyn8SIG/Mg+YtRUKgtC+kfWqPcdn8edD0KN5xzZSF60E1Tx6p5cDXq
nVKiPwvdWK6RFbVlAUiEfJx+l85C5yQrj3dOLADJxKaW3D8sNOAyNs6eWQBi
QMvh5yB+Hq1/HEVeBDnRMUoiIyz00Mr796EVi+BcaIiF8zgLfczc5fNi6yKI
6bOUXjrLQrq7MnOvWy4Cl+rYV6PLCLRPP1JUpHERFAVclDHfTqDapyWFA58W
weSpr/C0AoGMx/6YV3UugkDl5Nu6igS6Fqud5TGwCI6/WHJlpyqODy/K/KWQ
oJCFXGf3fgLFqhQVn15HgtbeqV5/dQkk+Gbb0IbTJFgZqSqeYE+g7seG73yN
SdBQwShM35FAr696pHWeI0GV8IsbF50IZLW50uyhFQk2icYiU1ccv2taL3CZ
BGOKH9+fdcfx86E5o2Ek2Ltx5fYefwIVzvReLntDgmJD+0q04wl0t1VQb20V
Ca7Iin7NeUIg6xzlLTdqSHDUabhGMZFAQlY+P5UaSPB7A3MDIxnHa8WN0jvw
ejse579Jx/FHmioRPBKc8LpaX8YkkO2uVK7JdjLsftvjc/gtgcLuiq+4tZMM
5TTUFe2qCZTTFyKfrEyGBpsrNgfXEIj3+NK5XjUyPMEq76usJVDIgnq5mxYZ
MrIDkuUbCPSy5nNEuDkZaq2pT0hqI1CD9LGMHEsy3C+R45/+mUDjnmWo2YYM
W5dcznjZTqD929PHVzmT4bQCX07uVwJ9uOdmnOZBhgv+t16mfSfQiMly2dJ7
ZKhCEiXv6yWQKMvvQFcMGY4/XsGW7SPQbsHJM9Q4MlwykJ26vJ9AvmVfQ48m
4vzGD2z5+odAwhsz/356QYbyebXt54cJpDx0qGSkggz1hZ85rZgkkIfPDSNp
Lhl6SNukSZDYSH7IWzB4mgznw/hT27HbTfyrh2fJUDB+xushmY3UdoXtK6FQ
4IhuB2cZlY2mB59sOCNMgcmsDrdOPjbyMkHj4dsosHGKvW/lMjbaWlP5alyB
Al07m/NZ2F9V39mZKFNg6oarC/qCbLRfuPmr3F4KvOh5Wsh3ORvNVXdXlGtT
oEaoAPXtCjbyUaXHTFlSoJDtr5Y+BhsppC7VM7elwDL7o7pWYmz0fcUK/rcO
OC7lGfEVGwyuuhl9iQKl3x5zqxJnI1LqFusdtyiQ/kun4NYqNmKuUJCK9aPA
2cuRt3qxLW4pf565TYH+7VWCehJsVG68/9i7MArMKZTxZ6xmo4AVeirWjyjw
oO424s4aNlK+ZThc+4QCzV4mZXdidw+cfq74lAI7FxSdlday0eFq87UL6bh+
v1rFVuxJFetPNi8oMP9cx54NkmyUlmIf9f4VBSb4biS7YtNuXaY+ZlFg4UfX
9gVsYsC9dLGAAquUfX4flmIjG2NPD7tiChRR6MwPwq5SCRhUKafA9PcJEXzr
2OjOQExLQwMFpuj3KPRjB37+XTfbTIHxAw1dq9ZjV+2pkP9EgRtePXqshR2Q
1MEM6KDApZf3r3uC7R++IzP3O85/6Yk/Fdh+N3yfdv6kQJZAQVE/to/Rxru7
+ymQ+37CQUGajW6Ba3esBylQIojviD629/Ya73sjFKgW3CV/Efvm6tXupWMU
yLTZIBSC7UV3dh6YpECFXAdeCrbnBMdq1TQFdmw1/FmEfaNLyFRzlgINwj0b
GrE96i0MryxQ4Hlf39Ie7OvF+TpJZCo8NEHK4WJfe06D72lUWJ715CmfDBu5
x57ZM81PhWczhu8zsK/6ZypsWkaF+Y9iA9dju7nObDISokLIVPDYgn3l3HEp
XxEqjCgxcVTCvqyTJPZKjAqzBQjTPf951+iyL6uo8NbVDt392Jc2HKLS11Lh
S1PXvQewXVfEziivo8K9iUvl/u+532MXZKjwerm+8H/Pu/zZ8ydClgppDe1T
u7EvtoV2FW2mwlTNI52K2M6VHZ97t1Jh5lm1UnlsJ+aORoYCFZr568avw3ZM
9K2GSlQ4RZO8KortENZc6qJKhTfCjx2hYdt7bGTH76FCo3seKyfxftjZXHtV
s48Kj0VrdP3EtjWseTZ5gAq/rwNp9dg2GqufyBykwqvfV1m9xrbe5hytr0mF
EsH2q59iW0mUht48QoVh3R9qA7Etxy1ufNKjwt17T4rpYlv8yL9EMaTCtqX5
2Vv+8wea/c5TVKhTl6LBj22ekXk61JQKuzxytTj4vJyPmTlecJ4KSX7LSmKw
zfyOa/ZYUGEPdJdzxDY1HVU+YE+FGc/7vy3HNjlyaKuTExX6uypv+YbPr7Fq
rEycCxWqZfE5vsQ+I6QmPHaVCptU31ZpYJ+eDeVf50GFG7aM/vjv/J/q71jQ
9aJCpQKZkTrcHycrfIfT/KiwYs3Kbn1so9zmX8238fvjl6hZ/p8TNnYuBFHh
Rb2kxDrcbwbXa+qMI6mwyqdASgP7+NYVmYLxVOjbFX5BEPevybtLmVsSqZDC
vW7Lwf1uZ9eUqZ1MhWV6t1ydsP1S77/wy6DC4NkrIW/wvCDWiGVN5lOhQqfY
x1P/zZNC9yyRAiqkN072TuJ503DmU5ZCERXK5UvORWP3Rz985YCoMK7h66ba
lWwkuWx1Tud7Kgw0VHGRwvNrywvPnH8NVHjQyN0rG8+33Ue+5qz8iPefsv3O
fmyD209yDdqpsMEw7r4hno+Bs1J5Vb+o8OvzEG9bETYaGtxAvJrH+ekfPb4d
z9d/obeJWhINiu78Sk/A85cu/4vopdLgvaPaRQLY0jbpbOmlNBitrkv7sRTv
b+fm17ErabCpeP+WK0vYiPNhe7H3Thrsny6wUMHzv9YpsvixMg3OVG+8FEBh
49/LI8UFu2gwYvmXS434vhjVzC0Z3U+DakbF2tb4PpEtVSq10aFBheMp0G2e
QJHZu98ct6TBgFrXVTumCCRnIW+ZbYP/Xyloz1EegcpE11CEHGhwqN6414pL
oFGP+cONrjR40eriyN0JAp06VFVj6E2DweKzT2r/Ekjys2HjmTgalHfXX1qL
70d26OHLr+NxfdD4Zym+P/XVd4lIJNGgJGslZP4mkF+KxMkvaTSopDweHdlD
oF/OP9rO5dOg+6Xf/lt/EOgVyeW7RT0N5u6Y2TD8iUBaLHPf8iYa1Pv6Bxa3
Eui7rYH0hlYaLCyI+RHYgu/b9ypWPV9p0E3BJFG0mUDuD2Z+2/bToKJ+gJDw
B3zfbw0ZdqLyQUf1HXbR5QSqO/lszn0vH/ztDX7lvSRQ/p3ur0/U+eCIgY66
zgsCxb+WKaoAfFD9TNy5zucEclqbfE1Ymw9u5X82Mp9GIIGehJEsIz54RiTX
TO4pgXTcHnZ1O/PB/muZSwVjCPT2XmiVQRIfHGrXh/KeuJ6Kd6keKXxQefxd
63UP/H1ukt8/KY0PXou6vKnyGoHvm6ADQy/5oL5C/79TbgSiSd8uCH7NB3tY
H23POxPoUK53ZlkTH3x1LmKOdJ5Ab+ovRWyn0uHeR8Nl9zQIpCoGl8XR6TC2
+XuSszqBMk2Fw8hL6ZB3s+Hd4X0EiupjBrcJ06GQ2ND04C4CmZPHA/zW0SFY
tli6dgeB5lTdPVv30iF3VbTX9BoC7U24Yed9mQ6T7dYUPptkoVfdOr97r9Jh
n5IPeTP+/iu9ZbWNoQcdliYxgp//ZaElBUWWcj50iJiSWskDLNTeOGPWFE6H
Gd0v/S53sdB16q2Tss/psE119EH4exbKd/KHH77RoUqr4IEXT1lI1crindxP
OjQ3sPTrSmChAhNg4P+LDv+VWAiKx7NQkc78hd2DdBglUj13LZaF3sh5+iZP
02GqPVdlVSgL1XdfLnNn8MNlnadT266wUL+phbrUUX54NSOQ0D7IQuuOATVX
gh8edJC+8elzPhopd56/+5ofrvjjVRDXmo+Q2qOK3GJ+KK/S5X+2OR9ZyI0d
H3vDD6e67pQ11uWjVPIzS/d6fkg7ZFydWpqPNhfSw716+aFuNL32Y2o+UtzU
8C1IYgksfWpgbeycjw4vmt1+6r0EFty1OtI/mYds2tB44WkBGKK5MLWymYk0
/APY+JcDZF4g6dXK56LoS2Mlgn1LocH370bmdq9Qt19679OyZXBIqN7tHN8L
NGhbZFMRLAi3+5SKnfdNR6Muovz1lsthoG/kzSOHU1DO0fdzdjuEIGn1+1Hj
5seo10FxN5UrBIX57IWtb99Da7K+xgTXr4DQUtOsY+t1dNvCLbX+mDD0OzDV
sLjlOpiaWx15rAib2V0YdisayJfEPa6TFYE3jBDr+MpksMv67QmRUBHoIChh
af0nA7xJEJf4wBWByRYs9fT6HCD/RjxM/5wodKdu+SNmxAJ6fENSH8tEYeD+
hynC1q/BaMevytqtDKi2N7tlcDkHXEqIZIRGMeAI6enyrJNvwAey7F/d+wzo
HqZB2WX+Bmy1L64TjGFAeYLftNzhDfil1Od/7yEDVpwrV/l56w0wroGjcYnY
qjdjD2S+AYfGJz5kZDFgv6CuouP8G7BSxzSoqoYBhXp+zUS8KAdXs0ctg2oZ
UPqU7HNrohw0iQYf0HnPgEu2fytRR+Ug/Btr8n0DAzbp2azntZYD0tXl1i2f
cLzMseUOqQIMJL4B3T0MGG9yUmy1cQU4Qj27Nu03A+o8mT+30roCpDkM82z7
GNAu663QStcKcEFlTc6fAQZkWhsXSAZWgNZ3VyXHxhjQbNsm0SPMCqCksHQ6
f4IBF76ce322pALcjUlucecyoOsgudapugIcNa8Pm55mQNEwTeVHnRUgo9La
rngG12u1Kyy/rwLQtswc9J5jwG4+jRON4xXA8u49KY0FBjR9EuI/Ml8Byibk
/i0uMmC1JpARFqgE/wO9KCa7
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox[
"\"\[CapitalDelta]/\\!\\(\\*SubscriptBox[\\(\[Epsilon]\\), \\(F\\)]\\)\"",
TraditionalForm],
FormBox[
"\"\[CapitalOmega]/\\!\\(\\*SubscriptBox[\\(\[Epsilon]\\), \\(F\\)]\\)\"",
TraditionalForm]},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImageSize->{989.26171875, Automatic},
Method->{"DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" -> None},
PlotRange->{{0, 5}, {-0.11212636061703292`, 0.1487140810336653}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.7269843165016937`*^9, 3.726984387488474*^9,
3.727038885202003*^9, 3.727038915681938*^9, 3.727038948184915*^9}]
}, Open ]],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.726983882073276*^9, 3.7269838870634537`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*",
RowBox[{"Thermaldynamical", " ", "Potential"}], "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"ClearAll", "[", "\"\<Global`*\>\"", "]"}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"t", "=",
RowBox[{"-", "0.1"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"r", "=", "0.5"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]", "[", "k_", "]"}], ":=",
RowBox[{"k", "^", "2"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]n", "[", "k_", "]"}], ":=",
RowBox[{
RowBox[{"\[Epsilon]", "[", "k", "]"}], "*",
RowBox[{
RowBox[{"(",
RowBox[{"r", "-", "1"}], ")"}], "/",
RowBox[{"(",
RowBox[{"r", "+", "1"}], ")"}]}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Xi]", "[",
RowBox[{"k_", ",", "\[Mu]_"}], "]"}], ":=",
RowBox[{
RowBox[{"\[Epsilon]", "[", "k", "]"}], "-", "\[Mu]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Ek", "[",
RowBox[{"k_", ",", "\[Mu]_", ",", "\[CapitalDelta]_"}], "]"}], ":=",
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{
RowBox[{"\[Xi]", "[",
RowBox[{"k", ",", "\[Mu]"}], "]"}], "^", "2"}], "+",
RowBox[{"\[CapitalDelta]", "^", "2"}]}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"E1", "[",
RowBox[{"k_", ",", "\[Mu]_", ",", "\[CapitalDelta]_", ",", "h_"}],
"]"}], ":=",
RowBox[{
RowBox[{"Ek", "[",
RowBox[{"k", ",", "\[Mu]", ",", "\[CapitalDelta]"}], "]"}], "-",
RowBox[{"(",
RowBox[{"h", "-",
RowBox[{"\[Epsilon]n", "[", "k", "]"}]}], ")"}]}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"E2", "[",
RowBox[{"k_", ",", "\[Mu]_", ",", "\[CapitalDelta]_", ",", "h_"}],
"]"}], ":=",
RowBox[{
RowBox[{"Ek", "[",
RowBox[{"k", ",", "\[Mu]", ",", "\[CapitalDelta]"}], "]"}], "+",
RowBox[{"(",
RowBox[{"h", "-",
RowBox[{"\[Epsilon]n", "[", "k", "]"}]}], ")"}]}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"T1", "[",
RowBox[{"k_", ",", "\[Mu]_", ",", "\[CapitalDelta]_", ",", "h_"}],
"]"}], ":=",
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"E1", "[",
RowBox[{"k", ",", "\[Mu]", ",", "\[CapitalDelta]", ",", "h"}], "]"}],
"<", "0"}], ",", "1", ",", "0"}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"T2", "[",
RowBox[{"k_", ",", "\[Mu]_", ",", "\[CapitalDelta]_", ",", "h_"}],
"]"}], ":=",
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"E2", "[",
RowBox[{"k", ",", "\[Mu]", ",", "\[CapitalDelta]", ",", "h"}], "]"}],
"<", "0"}], ",", "1", ",", "0"}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[CapitalOmega]0", "[",
RowBox[{"\[Mu]_", ",", "\[CapitalDelta]_"}], "]"}], ":=",
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[CapitalDelta]", "^", "2"}], "/", "2"}], "+",
RowBox[{
RowBox[{"k", "^", "2"}],
RowBox[{"\[Xi]", "[",
RowBox[{"k", ",", "\[Mu]"}], "]"}]}], "-",
RowBox[{
RowBox[{"k", "^", "2"}], " ",
RowBox[{"Ek", "[",
RowBox[{"k", ",", "\[Mu]", ",", "\[CapitalDelta]"}], "]"}]}]}], ",",
RowBox[{"{",
RowBox[{"k", ",", "0", ",", "5"}], "}"}]}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[CapitalOmega]1", "[",
RowBox[{"\[Mu]_", ",", "\[CapitalDelta]_", ",", "h_"}], "]"}], ":=",
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{
RowBox[{"k", "^", "2"}],
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"E1", "[",
RowBox[{"k", ",", "\[Mu]", ",", "\[CapitalDelta]", ",", "h"}],
"]"}], "*",
RowBox[{"T1", "[",
RowBox[{"k", ",", "\[Mu]", ",", "\[CapitalDelta]", ",", "h"}],
"]"}]}], "+",
RowBox[{
RowBox[{"E2", "[",
RowBox[{"k", ",", "\[Mu]", ",", "\[CapitalDelta]", ",", "h"}],
"]"}], "*",
RowBox[{"T2", "[",
RowBox[{"k", ",", "\[Mu]", ",", "\[CapitalDelta]", ",", "h"}],
"]"}]}]}], ")"}]}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"-", "5"}], ",", "5"}], "}"}]}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[CapitalOmega]", "[",
RowBox[{"\[Mu]_", ",", "\[CapitalDelta]_", ",", "h_"}], "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"\[CapitalDelta]", "^", "2"}]}], " ",
RowBox[{"t", "/",
RowBox[{"(",
RowBox[{"4", " ", "Pi"}], ")"}]}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"1", "/",
RowBox[{"(",
RowBox[{"2", " ",
RowBox[{"Pi", "^", "2"}]}], ")"}]}], ")"}],
RowBox[{"(",
RowBox[{
RowBox[{"\[CapitalOmega]0", "[",
RowBox[{"\[Mu]", ",", "\[CapitalDelta]"}], "]"}], "+",
RowBox[{"\[CapitalOmega]1", "[",
RowBox[{"\[Mu]", ",", "\[CapitalDelta]", ",", "h"}], "]"}]}],
")"}]}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"finddelta", "[",
RowBox[{"\[Mu]0_", ",", "h0_"}], "]"}], ":=",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Mu]", "=", "\[Mu]0"}], ",",
RowBox[{"h", "=", "h0"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[CapitalDelta]", "/.",
RowBox[{
RowBox[{"FindMinimum", "[",
RowBox[{
RowBox[{"\[CapitalOmega]", "[",
RowBox[{"\[Mu]", ",", "\[CapitalDelta]", ",", "h"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[CapitalDelta]", ",", "0.5"}], "}"}]}], "]"}], "[",
RowBox[{"[", "2", "]"}], "]"}]}], ",",
RowBox[{
RowBox[{"FindMinimum", "[",
RowBox[{
RowBox[{"\[CapitalOmega]", "[",
RowBox[{"\[Mu]", ",", "\[CapitalDelta]", ",", "h"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[CapitalDelta]", ",", "0.5"}], "}"}]}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}]}], "}"}]}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[CapitalOmega]test", "[",
RowBox[{"\[Mu]0_", ",", "h0_"}], "]"}], ":=",
RowBox[{
RowBox[{"finddelta", "[",
RowBox[{"\[Mu]0", ",", "h0"}], "]"}], "[",
RowBox[{"[", "2", "]"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"data", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[CapitalDelta]", "/.",
RowBox[{
RowBox[{"FindMinimum", "[",
RowBox[{
RowBox[{"\[CapitalOmega]", "[",
RowBox[{"\[Mu]0", ",", "\[CapitalDelta]", ",", "h0"}], "]"}],
",",
RowBox[{"{",
RowBox[{"\[CapitalDelta]", ",", "0.5"}], "}"}]}], "]"}], "[",
RowBox[{"[", "2", "]"}], "]"}]}], ",",
RowBox[{
RowBox[{"FindMinimum", "[",
RowBox[{
RowBox[{"\[CapitalOmega]", "[",
RowBox[{"\[Mu]0", ",", "\[CapitalDelta]", ",", "h0"}], "]"}],
",",
RowBox[{"{",
RowBox[{"\[CapitalDelta]", ",", "0.5"}], "}"}]}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Mu]0", ",",
RowBox[{"-", "1"}], ",", "1", ",", "0.2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"h0", ",",
RowBox[{"-", "1"}], ",", "1", ",", "0.2"}], "}"}]}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{"ListPlot", "[",
RowBox[{"Flatten", "[",
RowBox[{"data", ",", "1"}], "]"}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.7269670720029345`*^9, 3.726967148312896*^9}, {
3.72696739861018*^9, 3.726967408502452*^9}, {3.7269674641534433`*^9,
3.7269674875907927`*^9}, {3.7269675321392183`*^9, 3.726967535328699*^9},
3.7269675814644957`*^9, 3.7269676192700253`*^9, {3.7269676776622972`*^9,
3.7269677077302637`*^9}, {3.726967803847849*^9, 3.726967804159703*^9},
3.7269679399186735`*^9, {3.7269681375367637`*^9, 3.7269681406269813`*^9}, {
3.7269682456512547`*^9, 3.7269682542972884`*^9}, {3.72696842073483*^9,
3.7269684724594035`*^9}, {3.726968518019517*^9, 3.7269685890353975`*^9}, {
3.726968668992016*^9, 3.726968961052644*^9}, {3.726969012571667*^9,
3.7269690936614943`*^9}, {3.726969131289547*^9, 3.7269691359018335`*^9},
3.726969169977436*^9, {3.7269692281871834`*^9, 3.7269692303589597`*^9}, {
3.726969264061517*^9, 3.7269692914046507`*^9}, {3.7269693480949965`*^9,
3.726969398551165*^9}, {3.726974353606646*^9, 3.726974356628274*^9},
3.726974810837315*^9, {3.726975112405623*^9, 3.726975143147767*^9}},
ExpressionUUID -> "55714beb-69d6-4cb2-b076-66327c6ea8e2"],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"NIntegrate", "::", "inumr"}], "MessageName"],
RowBox[{
":", " "}], "\<\"The integrand \[NoBreak]\\!\\(\\(\\(k\\^2\\\\ \
\\(\\((\\(\\(1.` \[VeryThinSpace]\\)\\) + k\\^2)\\)\\)\\)\\) + \
\[CapitalDelta]\\^2\\/2 - \\(\\(k\\^2\\\\ \\@\\(\\((\\(\\(1.` \
\[VeryThinSpace]\\)\\) + k\\^2)\\)\\^2 + \[CapitalDelta]\\^2\\)\\)\\)\\)\
\[NoBreak] has evaluated to non-numerical values for all sampling points in \
the region with boundaries \[NoBreak]\\!\\({\\({0, 5}\\)}\\)\[NoBreak]. \
\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \
ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/NIntegrate/inumr\\\", \
ButtonNote -> \\\"NIntegrate::inumr\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9,
3.7269751434921303`*^9}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"NIntegrate", "::", "inumr"}], "MessageName"],
RowBox[{
":", " "}], "\<\"The integrand \[NoBreak]\\!\\(k\\^2\\\\ \
\\(\\((\\(\\(\\(\\((\\(\\(1.` \[VeryThinSpace]\\)\\) - \
\\(\\(0.3333333333333333`\\\\ k\\^2\\)\\) + \\@\\(\\(Plus[\\(\\(\
\[LeftSkeleton] 2 \[RightSkeleton]\\)\\)]\\)\\^2 + \[CapitalDelta]\\^2\\))\\)\
\\)\\\\ \\(\\(If[\\(\\(\\(\\(\\(\\(\\(\\(1.` \[VeryThinSpace]\\)\\) - \
\\(\\(0.3333333333333333`\\\\ \\(\\(Power[\\(\\(\[LeftSkeleton] 2 \
\[RightSkeleton]\\)\\)]\\)\\)\\)\\) + \\@\\(Plus[\\(\\(\[LeftSkeleton] 2 \
\[RightSkeleton]\\)\\)]\\)\\)\\) < 0\\)\\), 1, 0\\)\\)]\\)\\)\\)\\) + \
\\(\\(\\(\\((\\(\\(-1.`\\)\\) + \\(\\(0.3333333333333333`\\\\ k\\^2\\)\\) + \
\\@\\(\\(Plus[\\(\\(\[LeftSkeleton] 2 \[RightSkeleton]\\)\\)]\\)\\^2 + \
\[CapitalDelta]\\^2\\))\\)\\)\\\\ \\(\\(If[\\(\\(\\(\\(\\(\\(\\(\\(-1.`\\)\\) \
+ \\(\\(0.3333333333333333`\\\\ \\(\\(Power[\\(\\(\[LeftSkeleton] 2 \
\[RightSkeleton]\\)\\)]\\)\\)\\)\\) + \\@\\(Plus[\\(\\(\[LeftSkeleton] 2 \
\[RightSkeleton]\\)\\)]\\)\\)\\) < 0\\)\\), 1, 0\\)\\)]\\)\\)\\)\\))\\)\\)\\)\
\[NoBreak] has evaluated to non-numerical values for all sampling points in \
the region with boundaries \[NoBreak]\\!\\({\\({0, 5}\\)}\\)\[NoBreak]. \
\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \
ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/NIntegrate/inumr\\\", \
ButtonNote -> \\\"NIntegrate::inumr\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9,
3.726975143513546*^9}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"NIntegrate", "::", "inumr"}], "MessageName"],
RowBox[{
":", " "}], "\<\"The integrand \[NoBreak]\\!\\(\\(\\(k\\^2\\\\ \
\\(\\((\\(\\(1.` \[VeryThinSpace]\\)\\) + k\\^2)\\)\\)\\)\\) + \
\[CapitalDelta]\\^2\\/2 - \\(\\(k\\^2\\\\ \\@\\(\\((\\(\\(1.` \
\[VeryThinSpace]\\)\\) + k\\^2)\\)\\^2 + \[CapitalDelta]\\^2\\)\\)\\)\\)\
\[NoBreak] has evaluated to non-numerical values for all sampling points in \
the region with boundaries \[NoBreak]\\!\\({\\({0, 5}\\)}\\)\[NoBreak]. \
\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \
ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/NIntegrate/inumr\\\", \
ButtonNote -> \\\"NIntegrate::inumr\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9,
3.726975143536277*^9}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"General", "::", "stop"}], "MessageName"],
RowBox[{
":", " "}], "\<\"Further output of \
\[NoBreak]\\!\\(\\*StyleBox[\\(NIntegrate :: inumr\\), \
\\\"MessageName\\\"]\\)\[NoBreak] will be suppressed during this calculation. \
\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \
ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/General/stop\\\", \
ButtonNote -> \\\"General::stop\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9,
3.726975143550954*^9}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"],
RowBox[{
":", " "}], "\<\"Numerical integration converging too slowly; suspect one \
of the following: singularity, value of the integration is 0, highly \
oscillatory integrand, or WorkingPrecision too small. \\!\\(\\*ButtonBox[\\\"\
\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
ButtonData:>\\\"paclet:ref/message/NIntegrate/slwcon\\\", ButtonNote -> \
\\\"NIntegrate::slwcon\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9,
3.726975144049362*^9}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"NIntegrate", "::", "ncvb"}], "MessageName"],
RowBox[{
":", " "}], "\<\"NIntegrate failed to converge to prescribed accuracy after \
\[NoBreak]\\!\\(9\\)\[NoBreak] recursive bisections in \[NoBreak]\\!\\(k\\)\
\[NoBreak] near \[NoBreak]\\!\\({k}\\)\[NoBreak] = \
\[NoBreak]\\!\\({4.835445152341417`15.954589770191005}\\)\[NoBreak]. \
NIntegrate obtained \[NoBreak]\\!\\(6.491708354947283`*^-10\\)\[NoBreak] and \
\[NoBreak]\\!\\(5.64180641227194`*^-15\\)\[NoBreak] for the integral and \
error estimates. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\
\"Link\\\", ButtonFrame->None, \
ButtonData:>\\\"paclet:ref/message/NIntegrate/ncvb\\\", ButtonNote -> \
\\\"NIntegrate::ncvb\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9,
3.726975144075665*^9}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"],
RowBox[{
":", " "}], "\<\"Numerical integration converging too slowly; suspect one \
of the following: singularity, value of the integration is 0, highly \
oscillatory integrand, or WorkingPrecision too small. \\!\\(\\*ButtonBox[\\\"\
\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
ButtonData:>\\\"paclet:ref/message/NIntegrate/slwcon\\\", ButtonNote -> \
\\\"NIntegrate::slwcon\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9,
3.726975144252795*^9}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"NIntegrate", "::", "ncvb"}], "MessageName"],
RowBox[{
":", " "}], "\<\"NIntegrate failed to converge to prescribed accuracy after \
\[NoBreak]\\!\\(9\\)\[NoBreak] recursive bisections in \[NoBreak]\\!\\(k\\)\
\[NoBreak] near \[NoBreak]\\!\\({k}\\)\[NoBreak] = \
\[NoBreak]\\!\\({4.835445152341417`15.954589770191005}\\)\[NoBreak]. \
NIntegrate obtained \[NoBreak]\\!\\(6.491708354947283`*^-10\\)\[NoBreak] and \
\[NoBreak]\\!\\(5.64180641227194`*^-15\\)\[NoBreak] for the integral and \
error estimates. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\
\"Link\\\", ButtonFrame->None, \
ButtonData:>\\\"paclet:ref/message/NIntegrate/ncvb\\\", ButtonNote -> \
\\\"NIntegrate::ncvb\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9,
3.726975144278961*^9}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"],
RowBox[{
":", " "}], "\<\"Numerical integration converging too slowly; suspect one \
of the following: singularity, value of the integration is 0, highly \
oscillatory integrand, or WorkingPrecision too small. \\!\\(\\*ButtonBox[\\\"\
\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
ButtonData:>\\\"paclet:ref/message/NIntegrate/slwcon\\\", ButtonNote -> \
\\\"NIntegrate::slwcon\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9,
3.726975144454548*^9}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"General", "::", "stop"}], "MessageName"],
RowBox[{
":", " "}], "\<\"Further output of \
\[NoBreak]\\!\\(\\*StyleBox[\\(NIntegrate :: slwcon\\), \
\\\"MessageName\\\"]\\)\[NoBreak] will be suppressed during this calculation. \
\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \
ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/General/stop\\\", \
ButtonNote -> \\\"General::stop\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9,
3.726975144468851*^9}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"NIntegrate", "::", "ncvb"}], "MessageName"],
RowBox[{
":", " "}], "\<\"NIntegrate failed to converge to prescribed accuracy after \
\[NoBreak]\\!\\(9\\)\[NoBreak] recursive bisections in \[NoBreak]\\!\\(k\\)\
\[NoBreak] near \[NoBreak]\\!\\({k}\\)\[NoBreak] = \
\[NoBreak]\\!\\({4.94748847128778389270475912553592934273183345794677734375`\
65.954589770191}\\)\[NoBreak]. NIntegrate obtained \
\[NoBreak]\\!\\(6.485387624179541`*^-10\\)\[NoBreak] and \
\[NoBreak]\\!\\(6.454580101038746`*^-15\\)\[NoBreak] for the integral and \
error estimates. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\
\"Link\\\", ButtonFrame->None, \
ButtonData:>\\\"paclet:ref/message/NIntegrate/ncvb\\\", ButtonNote -> \
\\\"NIntegrate::ncvb\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9,
3.7269751444908943`*^9}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"General", "::", "stop"}], "MessageName"],
RowBox[{
":", " "}], "\<\"Further output of \
\[NoBreak]\\!\\(\\*StyleBox[\\(NIntegrate :: ncvb\\), \\\"MessageName\\\"]\\)\
\[NoBreak] will be suppressed during this calculation. \
\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \
ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/General/stop\\\", \
ButtonNote -> \\\"General::stop\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9,
3.726975144505975*^9}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"FindMinimum", "::", "lstol"}], "MessageName"],
RowBox[{
":", " "}], "\<\"The line search decreased the step size to within the \
tolerance specified by AccuracyGoal and PrecisionGoal but was unable to find \
a sufficient decrease in the function. You may need more than \
\[NoBreak]\\!\\(MachinePrecision\\)\[NoBreak] digits of working precision to \
meet these tolerances. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \
ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
ButtonData:>\\\"paclet:ref/message/FindMinimum/lstol\\\", ButtonNote -> \
\\\"FindMinimum::lstol\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9,
3.726975147614923*^9}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"FindMinimum", "::", "lstol"}], "MessageName"],
RowBox[{
":", " "}], "\<\"The line search decreased the step size to within the \
tolerance specified by AccuracyGoal and PrecisionGoal but was unable to find \
a sufficient decrease in the function. You may need more than \
\[NoBreak]\\!\\(MachinePrecision\\)\[NoBreak] digits of working precision to \
meet these tolerances. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \
ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
ButtonData:>\\\"paclet:ref/message/FindMinimum/lstol\\\", ButtonNote -> \
\\\"FindMinimum::lstol\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9,
3.726975151544942*^9}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"FindMinimum", "::", "lstol"}], "MessageName"],
RowBox[{
":", " "}], "\<\"The line search decreased the step size to within the \
tolerance specified by AccuracyGoal and PrecisionGoal but was unable to find \
a sufficient decrease in the function. You may need more than \
\[NoBreak]\\!\\(MachinePrecision\\)\[NoBreak] digits of working precision to \
meet these tolerances. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \
ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
ButtonData:>\\\"paclet:ref/message/FindMinimum/lstol\\\", ButtonNote -> \
\\\"FindMinimum::lstol\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9,
3.726975155511532*^9}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"General", "::", "stop"}], "MessageName"],
RowBox[{
":", " "}], "\<\"Further output of \
\[NoBreak]\\!\\(\\*StyleBox[\\(FindMinimum :: lstol\\), \
\\\"MessageName\\\"]\\)\[NoBreak] will be suppressed during this calculation. \
\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \
ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/General/stop\\\", \
ButtonNote -> \\\"General::stop\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9,
3.726975155526389*^9}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"NIntegrate", "::", "errprec"}], "MessageName"],
RowBox[{
":", " "}], "\<\"Catastrophic loss of precision in the global error \
estimate due to insufficient WorkingPrecision or divergent integral. \
\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \
ButtonFrame->None, ButtonData:>\\\"paclet:ref/NIntegrate\\\", ButtonNote -> \
\\\"NIntegrate::errprec\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9,
3.726975476730262*^9}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"NIntegrate", "::", "errprec"}], "MessageName"],