diff --git a/docs/src/statmodels.md b/docs/src/statmodels.md index 2cd565890..17994354d 100644 --- a/docs/src/statmodels.md +++ b/docs/src/statmodels.md @@ -17,20 +17,29 @@ deviance dof fit fit! +informationmatrix +isfitted +islinear loglikelihood +mss nobs nulldeviance r2 +rss +score stderr vcov +weights(::StatisticalModel) ``` `RegressionModel` extends `StatisticalModel` by implementing the following additional methods. ```@docs dof_residual fitted +leverage +meanresponse modelmatrix -model_response +response predict predict! residuals diff --git a/src/StatsBase.jl b/src/StatsBase.jl index bccb1e394..431b5bb3f 100644 --- a/src/StatsBase.jl +++ b/src/StatsBase.jl @@ -166,11 +166,20 @@ module StatsBase fit, fit!, fitted, + informationmatrix, + isfitted, + islinear, + leverage, loglikelihood, + meanresponse, modelmatrix, + mss, + response, nobs, nulldeviance, nullloglikelihood, + rss, + score, stderr, vcov, predict, @@ -178,7 +187,6 @@ module StatsBase residuals, r2, r², - model_response, ConvergenceException diff --git a/src/deprecates.jl b/src/deprecates.jl index f263376d9..ba4d36d1a 100644 --- a/src/deprecates.jl +++ b/src/deprecates.jl @@ -24,6 +24,7 @@ import Base.varm, Base.stdm @deprecate R²(obj::StatisticalModel, variant::Symbol) r²(obj, variant) @deprecate adjR2(obj::StatisticalModel, variant::Symbol) adjr2(obj, variant) @deprecate adjR²(obj::StatisticalModel, variant::Symbol) adjr²(obj, variant) +@deprecate model_response(obj::StatisticalModel) response(obj) @deprecate norepeats(a::AbstractArray) allunique(a) @@ -86,4 +87,4 @@ rand(s::RandIntSampler) = rand(Compat.Random.GLOBAL_RNG, s) @deprecate(mad!(v::AbstractArray{T}, center; constant::Real = 1 / (-sqrt(2 * one(T)) * erfcinv(3 * one(T) / 2))) where T<:Real, - mad!(v, center=center, constant=constant)) \ No newline at end of file + mad!(v, center=center, constant=constant)) diff --git a/src/statmodels.jl b/src/statmodels.jl index 92b66a937..e6ef1584c 100644 --- a/src/statmodels.jl +++ b/src/statmodels.jl @@ -39,6 +39,13 @@ the likelihood of the model. """ deviance(obj::StatisticalModel) = error("deviance is not defined for $(typeof(obj)).") +""" + islinear(obj::StatisticalModel) + +Indicate whether the model is linear. +""" +islinear(obj::StatisticalModel) = error("islinear is not defined for $(typeof(obj)).") + """ nulldeviance(obj::StatisticalModel) @@ -61,6 +68,14 @@ This is usually the model containing only the intercept. """ nullloglikelihood(obj::StatisticalModel) = error("nullloglikelihood is not defined for $(typeof(obj)).") +""" + score(obj::StatisticalModel) + +Return the score of the statistical model. The score is the gradient of the +log-likelihood with respect to the coefficients. +""" +score(obj::StatisticalModel) = error("score is not defined for $(typeof(obj)).") + """ nobs(obj::StatisticalModel) @@ -79,6 +94,29 @@ when applicable the intercept and the distribution's dispersion parameter. """ dof(obj::StatisticalModel) = error("dof is not defined for $(typeof(obj)).") +""" + mss(obj::StatisticalModel) + +Return the model sum of squares. +""" +mss(obj::StatisticalModel) = error("mss is not defined for $(typeof(obj)).") + +""" + rss(obj::StatisticalModel) + +Return the residual sum of squares. +""" +rss(obj::StatisticalModel) = error("rss is not defined for $(typeof(obj)).") + +""" + informationmatrix(model::StatisticalModel; expected::Bool = true) + +Return the information matrix. By default the Fisher information matrix is returned, +while the observed information matrix can be requested with `expected = false`. +""" +informationmatrix(model::StatisticalModel; expected::Bool = true) = + error("informationmatrix is not defined for $(typeof(obj)).") + """ stderr(obj::StatisticalModel) @@ -93,6 +131,20 @@ Return the variance-covariance matrix for the coefficients of the model. """ vcov(obj::StatisticalModel) = error("vcov is not defined for $(typeof(obj)).") +""" + weights(obj::StatisticalModel) + +Return the weights used in the model. +""" +weights(obj::StatisticalModel) = error("weights is not defined for $(typeof(obj)).") + +""" + isfitted(obj::StatisticalModel) + +Indicate whether the model has been fitted. +""" +isfitted(obj::StatisticalModel) = error("isfitted is not defined for $(typeof(obj)).") + """ Fit a statistical model. """ @@ -137,15 +189,23 @@ the likelihood of the model, ``k`` its number of consumed degrees of freedom bic(obj::StatisticalModel) = -2loglikelihood(obj) + dof(obj)*log(nobs(obj)) """ - r2(obj::StatisticalModel, variant::Symbol) - r²(obj::StatisticalModel, variant::Symbol) + r2(obj::StatisticalModel) + r²(obj::StatisticalModel) Coefficient of determination (R-squared). For a linear model, the R² is defined as ``ESS/TSS``, with ``ESS`` the explained sum of squares -and ``TSS`` the total sum of squares, and `variant` can be omitted. +and ``TSS`` the total sum of squares. +""" +r2(obj::StatisticalModel) = mss(obj) / deviance(obj) -For other models, one of several pseudo R² definitions must be chosen via `variant`. +""" + r2(obj::StatisticalModel, variant::Symbol) + r²(obj::StatisticalModel, variant::Symbol) + +Pseudo-coefficient of determination (pseudo R-squared). + +For nonlinear models, one of several pseudo R² definitions must be chosen via `variant`. Supported variants are: - `:MacFadden` (a.k.a. likelihood ratio index), defined as ``1 - \\log L/\\log L0``. - `:CoxSnell`, defined as ``1 - (L0/L)^{2/n}`` @@ -174,16 +234,24 @@ end const r² = r2 """ - adjr2(obj::StatisticalModel, variant::Symbol) - adjr²(obj::StatisticalModel, variant::Symbol) + adjr2(obj::StatisticalModel) + adjr²(obj::StatisticalModel) Adjusted coefficient of determination (adjusted R-squared). For linear models, the adjusted R² is defined as ``1 - (1 - (1-R^2)(n-1)/(n-p))``, with ``R^2`` the coefficient of determination, ``n`` the number of observations, and ``p`` the number of coefficients (including the intercept). This definition is generally known as the Wherry Formula I. +""" +adjr2(obj::StatisticalModel) = error("adjr2 is not defined for $(typeof(obj)).") -For other models, one of the several pseudo R² definitions must be chosen via `variant`. +""" + adjr2(obj::StatisticalModel, variant::Symbol) + adjr²(obj::StatisticalModel, variant::Symbol) + +Adjusted pseudo-coefficient of determination (adjusted pseudo R-squared). + +For nonlinear models, one of the several pseudo R² definitions must be chosen via `variant`. The only currently supported variant is `:MacFadden`, defined as ``1 - (\\log L - k)/\\log L0``. In this formula, ``L`` is the likelihood of the model, ``L0`` that of the null model (the model including only the intercept). These two quantities are taken to be minus half @@ -214,11 +282,18 @@ Return the fitted values of the model. fitted(obj::RegressionModel) = error("fitted is not defined for $(typeof(obj)).") """ - model_response(obj::RegressionModel) + response(obj::RegressionModel) Return the model response (a.k.a. the dependent variable). """ -model_response(obj::RegressionModel) = error("model_response is not defined for $(typeof(obj)).") +response(obj::RegressionModel) = error("response is not defined for $(typeof(obj)).") + +""" + meanresponse(obj::RegressionModel) + +Return the mean of the response. +""" +meanresponse(obj::RegressionModel) = error("meanresponse is not defined for $(typeof(obj)).") """ modelmatrix(obj::RegressionModel) @@ -227,6 +302,13 @@ Return the model matrix (a.k.a. the design matrix). """ modelmatrix(obj::RegressionModel) = error("modelmatrix is not defined for $(typeof(obj)).") +""" + leverage(obj::RegressionModel) + +Return the diagonal of the projection matrix. +""" +leverage(obj::RegressionModel) = error("leverage is not defined for $(typeof(obj)).") + """ residuals(obj::RegressionModel) diff --git a/test/statmodels.jl b/test/statmodels.jl index 252d238c0..d024be81e 100644 --- a/test/statmodels.jl +++ b/test/statmodels.jl @@ -34,7 +34,7 @@ x3 0.453058 0.72525 0.999172 0.5567 @test sprint(showerror, ConvergenceException(10)) == "failure to converge after 10 iterations." -@test sprint(showerror, ConvergenceException(10, 0.2, 0.1)) == +@test sprint(showerror, ConvergenceException(10, 0.2, 0.1)) == "failure to converge after 10 iterations. Last change (0.2) was greater than tolerance (0.1)." err = @test_throws ArgumentError ConvergenceException(10,.1,.2)