diff --git a/src/signalcorr.jl b/src/signalcorr.jl index 1c4fbec7d..9c348e195 100644 --- a/src/signalcorr.jl +++ b/src/signalcorr.jl @@ -56,6 +56,8 @@ before computing the autocovariance. If `x` is a vector, `r` must be a vector of the same length as `x`. If `x` is a matrix, `r` must be a matrix of size `(length(lags), size(x,2))`, and where each column in the result will correspond to a column in `x`. + +The output is not normalized. See [`autocor!`](@ref) for a method with normalization. """ function autocov!(r::RealVector, x::AbstractVector{T}, lags::IntegerVector; demean::Bool=true) where T<:RealFP lx = length(x) @@ -101,6 +103,8 @@ where each column in the result corresponds to a column in `x`. When left unspecified, the lags used are the integers from 0 to `min(size(x,1)-1, 10*log10(size(x,1)))`. + +The output is not normalized. See [`autocor`](@ref) for a function with normalization. """ function autocov(x::AbstractVector{T}, lags::IntegerVector; demean::Bool=true) where T<:Real autocov!(Vector{fptype(T)}(length(lags)), float(x), lags; demean=demean) @@ -124,6 +128,9 @@ be subtracted from `x` before computing the ACF. If `x` is a vector, `r` must be a vector of the same length as `x`. If `x` is a matrix, `r` must be a matrix of size `(length(lags), size(x,2))`, and where each column in the result will correspond to a column in `x`. + +The output is normalized by the variance of `x`, i.e. so that the lag 0 +autocorrelation is 1. See [`autocov!`](@ref) for the unnormalized form. """ function autocor!(r::RealVector, x::AbstractVector{T}, lags::IntegerVector; demean::Bool=true) where T<:RealFP lx = length(x) @@ -171,6 +178,9 @@ where each column in the result corresponds to a column in `x`. When left unspecified, the lags used are the integers from 0 to `min(size(x,1)-1, 10*log10(size(x,1)))`. + +The output is normalized by the variance of `x`, i.e. so that the lag 0 +autocorrelation is 1. See [`autocov`](@ref) for the unnormalized form. """ function autocor(x::AbstractVector{T}, lags::IntegerVector; demean::Bool=true) where T<:Real autocor!(Vector{fptype(T)}(length(lags)), float(x), lags; demean=demean) @@ -209,6 +219,8 @@ If both `x` and `y` are vectors, `r` must be a vector of the same length as `(length(lags), size(x, 2))`; if `x` is a vector and `y` is a matrix, `r` must be a matrix of size `(length(lags), size(y, 2))`. If both `x` and `y` are matrices, `r` must be a three-dimensional array of size `(length(lags), size(x, 2), size(y, 2))`. + +The output is not normalized. See [`crosscor!`](@ref) for a function with normalization. """ function crosscov!(r::RealVector, x::AbstractVector{T}, y::AbstractVector{T}, lags::IntegerVector; demean::Bool=true) where T<:RealFP lx = length(x) @@ -310,6 +322,8 @@ If both `x` and `y` are vectors, return a vector of the same length as When left unspecified, the lags used are the integers from `-min(size(x,1)-1, 10*log10(size(x,1)))` to `min(size(x,1), 10*log10(size(x,1)))`. + +The output is not normalized. See [`crosscor`](@ref) for a function with normalization. """ function crosscov(x::AbstractVector{T}, y::AbstractVector{T}, lags::IntegerVector; demean::Bool=true) where T<:Real crosscov!(Vector{fptype(T)}(length(lags)), float(x), float(y), lags; demean=demean) @@ -343,6 +357,9 @@ If both `x` and `y` are vectors, `r` must be a vector of the same length as `(length(lags), size(x, 2))`; if `x` is a vector and `y` is a matrix, `r` must be a matrix of size `(length(lags), size(y, 2))`. If both `x` and `y` are matrices, `r` must be a three-dimensional array of size `(length(lags), size(x, 2), size(y, 2))`. + +The output is normalized by `sqrt(var(x)*var(y))`. See [`crosscov!`](@ref) for the +unnormalized form. """ function crosscor!(r::RealVector, x::AbstractVector{T}, y::AbstractVector{T}, lags::IntegerVector; demean::Bool=true) where T<:RealFP lx = length(x) @@ -453,6 +470,9 @@ If both `x` and `y` are vectors, return a vector of the same length as When left unspecified, the lags used are the integers from `-min(size(x,1)-1, 10*log10(size(x,1)))` to `min(size(x,1), 10*log10(size(x,1)))`. + +The output is normalized by `sqrt(var(x)*var(y))`. See [`crosscov`](@ref) for the +unnormalized form. """ function crosscor(x::AbstractVector{T}, y::AbstractVector{T}, lags::IntegerVector; demean::Bool=true) where T<:Real crosscor!(Vector{fptype(T)}(length(lags)), float(x), float(y), lags; demean=demean)