-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvectornav.hpp
234 lines (208 loc) · 6.25 KB
/
vectornav.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#ifndef vectornav
#define vectornav
// Union functions for byte to usable fucking data conversions
// IMU sends data as bytes in reverse order, the union functions are used to
// convert this data into other data types to actually use it
#include <Arduino.h>
enum position {
EV,
IC,
Golfie,
Logger,
};
class vNav {
private:
unsigned short calc_imu_crc(byte data[], uint16_t length); // check msg
HardwareSerial &serial_port; // Target port
byte in[90]; // Buffer to hold
// Raw byte -> data guys
union {
uint64_t v;
byte b[8];
} raw_time;
union {
uint16_t v;
byte b[2];
} raw_INS;
union {
struct {
float yaw;
float pitch;
float roll;
};
byte b[12];
} raw_attitude;
union {
struct {
float x;
float y;
float z;
};
byte b[12];
} raw_ang_rate;
union {
struct {
float north;
float east;
float down;
};
byte b[12];
} raw_velocity;
union {
struct {
float x;
float y;
float z;
};
byte b[12];
} raw_accel;
union {
struct {
double latitude;
double longitude;
double altitude;
};
byte b[24];
} raw_position;
union {
uint16_t s;
byte b[2];
} checksum;
public:
// Can ready values
uint64_t time;
uint16_t ins;
int32_t lat_lon[2];
int16_t attitude[3];
int16_t ang_rate[3];
int16_t velocity[3];
int16_t accel[3];
// Some functions or something idk
vNav(HardwareSerial &target_port) : serial_port(target_port){};
void init(position pos);
void read_data(); // read nav data
bool check_sync_byte(void); // check for new msg
};
void vNav::init(position pos) {
// Wait for NAV UART to start
Serial.println("Init NAV");
serial_port.begin(230400);
// Please just use the Vector Nav Control Center tool to generate the messages
// I fucking hate calculating these by hand so much don't torture yourself
// also if you change the feilds it fucks with the parser to be careful
// Baud rate
serial_port.println("$VNWRG,5,230400,1*7049");
switch (pos) {
case EV:
// Refrence frame offset
serial_port.println("$VNWRG,26,+0.000000,+0.000000,-1.000000,+0.000000,-1."
"000000,+0.000000,-1.000000,+0.000000,+0.000000*20A7");
// GPS antenna offset
serial_port.println("$VNWRG,57,+0.798,-0.127,-0.495*5546");
break;
case IC:
serial_port.println("$VNWRG,26,+1.000000,+0.000000,+0.000000,+0.000000,+1."
"000000,+0.000000,+0.000000,+0.000000,+1.000000*C622");
serial_port.println("$VNWRG,57,0.9017,-0.3048,-0.3302*9FF5");
break;
case Golfie:
serial_port.println("$VNWRG,26,+1.000000,+0.000000,+0.000000,+0.000000,+1."
"000000,+0.000000,+0.000000,+0.000000,+1.000000*C622");
serial_port.println("$VNWRG,57,-.2,+0.000,-1.5*103C");
break;
default:
serial_port.println("$VNWRG,26,+1.000000,+0.000000,+0.000000,+0.000000,+1."
"000000,+0.000000,+0.000000,+0.000000,+1.000000*C622");
serial_port.println("$VNWRG,57,+0.000,+0.000,+0.000*E341");
break;
};
// This sets what feilds you want and at what rate for the first bin output
serial_port.println("$VNWRG,75,1,40,01,1042*23E6");
// And this is for the secondary bin output
serial_port.println("$VNWRG,76,1,2,01,01A8*0488");
Serial.println("NAV set");
}
// Read the NAV bytes
void vNav::read_data() {
// Read the next 3 bytes to get what bin group it is
serial_port.readBytes(in, 3);
// Check if its the 20hz bin
if (in[1] == 0x42 && in[2] == 0x10) {
// Read the bytes into a buffer
serial_port.readBytes(&in[3], 36);
// Grab the checksum
checksum.b[0] = in[38];
checksum.b[1] = in[37];
// Make sure the checksum is valid
if (calc_imu_crc(in, 37) == checksum.s) {
// Get Time
for (int i = 0; i < 8; i++) {
raw_time.b[i] = in[3 + i];
}
time = raw_time.v;
// Get position
for (int i = 0; i < 24; i++) {
raw_position.b[i] = in[11 + i];
}
lat_lon[0] = int32_t(raw_position.latitude * 10000000);
lat_lon[1] = int32_t(raw_position.longitude * 10000000);
// Get INS state
for (int i = 0; i < 2; i++) {
raw_INS.b[i] = in[35 + i];
}
ins = raw_INS.v;
}
}
// Check if its the 400Hz bin
else if (in[1] == 0xA8 && in[2] == 0x01) {
// Read the bytes into a buffer
serial_port.readBytes(&in[3], 50);
// Grab the checksum
checksum.b[0] = in[52];
checksum.b[1] = in[51];
if (calc_imu_crc(in, 51) == checksum.s) {
// Get attitude, rate of attitude, velocity & acceleration
for (int i = 0; i < 12; i++) {
raw_attitude.b[i] = in[3 + i];
raw_ang_rate.b[i] = in[15 + i];
raw_velocity.b[i] = in[27 + i];
raw_accel.b[i] = in[39 + i];
}
attitude[0] = int16_t(raw_attitude.yaw * 100);
attitude[1] = int16_t(raw_attitude.roll * 100);
attitude[2] = int16_t(raw_attitude.pitch * 100);
ang_rate[0] = int16_t(raw_ang_rate.x * 100);
ang_rate[1] = int16_t(raw_ang_rate.y * 100);
ang_rate[2] = int16_t(raw_ang_rate.z * 100);
velocity[0] = int16_t(raw_velocity.north * 100);
velocity[1] = int16_t(raw_velocity.east * 100);
velocity[2] = int16_t(raw_velocity.down * 100);
accel[0] = int16_t(raw_accel.x * 100);
accel[1] = int16_t(raw_accel.y * 100);
accel[2] = int16_t(raw_accel.z * 100);
}
}
}
// Check for the sync byte (0xFA)
bool vNav::check_sync_byte(void) {
for (int i = 0; i < 6; i++) {
serial_port.readBytes(in, 1);
if (in[0] == 0xFA) {
return true;
}
}
return false;
}
// Calculate the 16-bit CRC for the given ASCII or binary message.
uint16_t vNav::calc_imu_crc(byte data[], uint16_t length) {
uint16_t crc = 0;
for (uint16_t i = 0; i < length; i++) {
crc = (byte)(crc >> 8) | (crc << 8); // Rotate crc left 8 bits
crc ^= data[i]; // XOR crc with data[i]
crc ^= (byte)(crc & 0xff) >> 4; // XOR crc with lower 4 bits of crc
crc ^= crc << 12; // Rotate crc left 12 bits
crc ^= (crc & 0x00ff) << 5; // XOR crc w lower 8 bits & shift left 5 bits
}
return crc;
}
#endif