-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtransformer_1d.py
181 lines (156 loc) · 7.54 KB
/
transformer_1d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from dataclasses import dataclass
from typing import Optional
import torch
import torch.nn.functional as F
from torch import nn
from utils import BaseModule
from basic_transformer_block import BasicTransformerBlock
class Transformer1D(BaseModule):
@dataclass
class Config(BaseModule.Config):
num_attention_heads: int = 16
attention_head_dim: int = 88
in_channels: Optional[int] = None
out_channels: Optional[int] = None
num_layers: int = 1
dropout: float = 0.0
norm_num_groups: int = 32
cross_attention_dim: Optional[int] = None
attention_bias: bool = False
activation_fn: str = "geglu"
only_cross_attention: bool = False
double_self_attention: bool = False
upcast_attention: bool = False
norm_type: str = "layer_norm"
norm_elementwise_affine: bool = True
gradient_checkpointing: bool = False
cfg: Config
def configure(self) -> None:
self.num_attention_heads = self.cfg.num_attention_heads
self.attention_head_dim = self.cfg.attention_head_dim
inner_dim = self.num_attention_heads * self.attention_head_dim
linear_cls = nn.Linear
# 2. Define input layers
self.in_channels = self.cfg.in_channels
self.norm = torch.nn.GroupNorm(
num_groups=self.cfg.norm_num_groups,
num_channels=self.cfg.in_channels,
eps=1e-6,
affine=True,
)
self.proj_in = linear_cls(self.cfg.in_channels, inner_dim)
# 3. Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
self.num_attention_heads,
self.attention_head_dim,
dropout=self.cfg.dropout,
cross_attention_dim=self.cfg.cross_attention_dim,
activation_fn=self.cfg.activation_fn,
attention_bias=self.cfg.attention_bias,
only_cross_attention=self.cfg.only_cross_attention,
double_self_attention=self.cfg.double_self_attention,
upcast_attention=self.cfg.upcast_attention,
norm_type=self.cfg.norm_type,
norm_elementwise_affine=self.cfg.norm_elementwise_affine,
)
for d in range(self.cfg.num_layers)
]
)
# 4. Define output layers
self.out_channels = (
self.cfg.in_channels
if self.cfg.out_channels is None
else self.cfg.out_channels
)
self.proj_out = linear_cls(inner_dim, self.cfg.in_channels)
self.gradient_checkpointing = self.cfg.gradient_checkpointing
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
):
"""
The [`Transformer1DModel`] forward method.
Args:
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
Input `hidden_states`.
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
self-attention.
attention_mask ( `torch.Tensor`, *optional*):
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
negative values to the attention scores corresponding to "discard" tokens.
encoder_attention_mask ( `torch.Tensor`, *optional*):
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
* Mask `(batch, sequence_length)` True = keep, False = discard.
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
above. This bias will be added to the cross-attention scores.
Returns:
torch.FloatTensor
"""
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
# expects mask of shape:
# [batch, key_tokens]
# adds singleton query_tokens dimension:
# [batch, 1, key_tokens]
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
if attention_mask is not None and attention_mask.ndim == 2:
# assume that mask is expressed as:
# (1 = keep, 0 = discard)
# convert mask into a bias that can be added to attention scores:
# (keep = +0, discard = -10000.0)
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# convert encoder_attention_mask to a bias the same way we do for attention_mask
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
encoder_attention_mask = (
1 - encoder_attention_mask.to(hidden_states.dtype)
) * -10000.0
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
# 1. Input
batch, _, seq_len = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 1).reshape(
batch, seq_len, inner_dim
)
hidden_states = self.proj_in(hidden_states)
# 2. Blocks
for block in self.transformer_blocks:
if self.training and self.gradient_checkpointing:
hidden_states = torch.utils.checkpoint.checkpoint(
block,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
use_reentrant=False,
)
else:
hidden_states = block(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
# 3. Output
hidden_states = self.proj_out(hidden_states)
hidden_states = (
hidden_states.reshape(batch, seq_len, inner_dim)
.permute(0, 2, 1)
.contiguous()
)
output = hidden_states + residual
return output