Skip to content

Latest commit

 

History

History
48 lines (36 loc) · 1.5 KB

GOterm_enrichment.md

File metadata and controls

48 lines (36 loc) · 1.5 KB

GO term enrichment using Top GO version 2.38.1 in Bioconductor

library(topGO)

To perform GO enrichment we needed:

  1. Differential expressed genes (myInteresingGenes)
  2. GO term annotation of T. atrovirideIMI206040 (geneID2GO)
  3. List of GO and genes taht will use as Universe (geneNames)

We selected our interesting genes by K-means method, and herarchical clustering.

  1. We call our DEG list
DEGlist1= read.table ("DEGlist1.txt",header=T, row.names = 1, sep="\t")

  1. Now we call the GO annotation of the organism using the function "readMappings"
geneID2GO <- readMappings("GOannotation_T.atroviride.txt",sep="\t", IDsep = ";")
  1. To obtain a gene universe we used the list of the point 2
geneNames <- names (geneID2GO) 
  1. Now we selected the names if the Interesting genes
myInterestingGenes1= rownames(DEGlist1)
  1. Next step is to search the interesting genes in the gene Universe
geneList1 <- factor(as.integer(geneNames %in% myInterestingGenes1))
names(geneList1) <- geneNames
  1. We reated the GOdata object that contain lists and tables above created
GOdata <- new("topGOdata", ontology = "BP", allGenes = geneList1, annot =annFUN.gene2GO, gene2GO = geneID2GO) 
Interesting-genes=allGenes; annot(anotacion de temrinos GO-genes), gene2GO:universo de genes (los mismosque la anotación)

resultFis <- runTest(GOdata, algorithm = "classic", statistic = "fisher")

allRes <- GenTable(GOdata, classic = resultFis,orderBy = "weight", ranksOf = "classic", topNodes = 50)