forked from paulrougieux/FAOSTATpackage
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFAOSTATdemo.R
118 lines (94 loc) · 5.55 KB
/
FAOSTATdemo.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
###########################################################################
## Title: Demo of the FAOSTAT package
## Updated: 16/07/2014
## Notes:
###########################################################################
# Install the package -----------------------------------------------------
if(!is.element("FAOSTAT", .packages(all.available = TRUE)))
install_github(username = "mkao006", repo = "FAOSTATpackage", ref = "master", subdir = "FAOSTAT")
library(FAOSTAT)
help(package = "FAOSTAT")
vignette("FAOSTAT", package = "FAOSTAT")
# FAOsearch function ------------------------------------------------------
## Use the interective function to search the codes.
FAOsearch()
## Use the result of the search to download the data.
test.df = getFAO(query = .LastSearch)
# getFAO, getFAOtoSYB, and CHMT functions ---------------------------------
## A demonstration query
FAOquery.df = data.frame(varName = c("arableLand", "cerealExp", "cerealProd"),
domainCode = c("RL", "TP", "QC"),
itemCode = c(6621, 1944, 1717),
elementCode = c(5110, 5922, 5510),
stringsAsFactors = FALSE)
## Download the data from FAOSTAT
FAO.lst = with(FAOquery.df,
getFAOtoSYB(name = varName, domainCode = domainCode,
itemCode = itemCode, elementCode = elementCode,
useCHMT = TRUE, outputFormat = "wide"))
FAO.lst$entity[, "arableLand"] = as.numeric(FAO.lst$entity[, "arableLand"])
# FAOcheck function - multiChina ------------------------------------------
## FAOcheck function
FAOchecked.df = FAOcheck(var = FAOquery.df$varName, year = "Year",
data = FAO.lst$entity, type = "multiChina",
take = "simpleCheck")
# getWDI and getWDItoSYB functions ----------------------------------------
## Download World Bank data and meta-data
WB.lst = getWDItoSYB(indicator = c("SP.POP.TOTL", "NY.GDP.MKTP.CD"),
name = c("totalPopulation", "GDPUSD"),
getMetaData = TRUE, printMetaData = TRUE)
# fillCountryCode function ------------------------------------------------
## Just a demonstration
Demo = WB.lst$entity[, c("Country", "Year", "totalPopulation")]
demoResult = fillCountryCode(country = "Country", data = Demo,
outCode = "ISO2_WB_CODE")
## Countries have not been filled in
unique(demoResult[is.na(demoResult$ISO2_WB_CODE), "Country"])
# mergeSYB and translateCountryCode functions -----------------------------
merged.df = mergeSYB(FAOchecked.df, WB.lst$entity, outCode = "FAOST_CODE")
# translateUnit and scaleUnit functions -----------------------------------
multipliers = data.frame(Variable = c("arableLand", "cerealExp", "cerealProd",
"totalPopulation", "GDPUSD"),
Multipliers = c("thousand", NA, NA, NA, NA),
stringsAsFactors = FALSE)
multipliers[, "Multipliers"] =
as.numeric(translateUnit(multipliers[, "Multipliers"]))
preConstr.df = scaleUnit(merged.df, multipliers)
# construct new variables -------------------------------------------------
con.df = data.frame(STS_ID = c("arableLandPC", "arableLandShareOfTotal",
"totalPopulationGeoGR", "totalPopulationLsGR",
"totalPopulationInd", "totalPopulationCh"),
STS_ID_CONSTR1 = c(rep("arableLand", 2),
rep("totalPopulation", 4)),
STS_ID_CONSTR2 = c("totalPopulation", NA, NA, NA, NA, NA),
STS_ID_WEIGHT = rep("totalPopulation", 6),
CONSTRUCTION_TYPE = c("share", "share", "growth", "growth",
"index", "change"),
GROWTH_RATE_FREQ = c(NA, NA, 10, 10, NA, 1),
GROWTH_TYPE = c(NA, NA, "geo", "ls", NA, NA),
BASE_YEAR = c(NA, NA, NA, NA, 2000, NA),
AGGREGATION = rep("weighted.mean", 6),
THRESHOLD_PROP = rep(60, 6),
stringsAsFactors = FALSE)
postConstr.lst = with(con.df,
constructSYB(data = preConstr.df,
origVar1 = STS_ID_CONSTR1,
origVar2 = STS_ID_CONSTR2,
newVarName = STS_ID,
constructType = CONSTRUCTION_TYPE,
grFreq = GROWTH_RATE_FREQ,
grType = GROWTH_TYPE,
baseYear = BASE_YEAR))
# Aggregation -------------------------------------------------------------
## Compute aggregates under the FAO continental region.
relation.df = FAOregionProfile[, c("FAOST_CODE", "UNSD_MACRO_REG")]
Macroregion.df = Aggregation(data = postConstr.lst$data,
relationDF = relation.df,
aggVar = c("arableLand", "totalPopulation",
"arableLandPC"),
weightVar = c(NA, NA, "totalPopulation"),
aggMethod = c("sum", "sum", "weighted.mean"),
applyRules = TRUE,
keepUnspecified = TRUE,
unspecifiedCode = "NotClassified",
thresholdProp = c(rep(0.65,3)))