forked from serge-sans-paille/pythran
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChangelog
152 lines (77 loc) · 3.64 KB
/
Changelog
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
2016-01-05 Serge Guelton <[email protected]>
* IPython's magic for pythran now supports extra compile flags
* Pythran's C++ output is compatible with Python3 and pythran3 can compile it!
* More syntax checks (and less template traceback)
* Improved UI (multiline pythran exports, better setup.py...)
* Pythonic leaning / bugfixing (this tends to be a permanent item)
* More generic support for numpy's dtype
* Simpler install (no more boost.python deps, nor nt2 configuration)
* Faster compilation (no more boost.python deps, smarter pass manager)
* Better testing (gcc + clang)
2015-10-13 Serge Guelton <[email protected]>
* Significantly decrease compilation time
* Faster execution of numpy generalized slicing
* Tentative conda support
* Tentative Windows support (using Win Python)
* Preserve original docstrings
* Add __pythran__ global variable to pythran generated modules
* Faster implementation of various itertools functions
* Rely on distutils for module code compilation
* Support most of numpy.random
* Remove git and make dependency to install nt2
* Proper pip support instead of distuils
* Remove dependency to boost.python
* Remove dependency to tcmalloc
* Pythonic library cleaning (less dependencies / header / splitting / mrpropering)
* More lazy computations
* More numpy function support (including dot on matrices, linalg.norm, mean)
* Lot of code cleaning / refactoring (both in Python and C++)
* Many bugfixes, thanks to all the bug reporters!
2015-04-06 Serge Guelton <[email protected]>
* Various numpy.* function implementation improvement (incl. concatenate,
str.join, itertools.combinations)
* Better error detection during install step
* 32 bit compatibility
* Complete rewrite of the expression engine
* Improved support of numpy extended expression
* Better user feedback on invalid pythran spec
* More efficient support of string litterals
* Faster exponentiation when index is an integer
* NT2 revision bump
* No-copy list as numpy expression parameters
* Accept C and fortran layout for input arrays
* Range value analysis and boundcheck removal
* Newaxis style indexing
* Better array-of-complex support
* Glimpses of python3 support
* Support for importing user defined modules
* Archlinux support
* Accept strided array as exported function input
2014-10-22 Serge Guelton <[email protected]>
* Full SIMD support! Almost all numpy expressions are vectorized
* Better memory management at the Python/C++ layer, esp. when sharing
* Support named parameters
* Better complex numbers support
* A lot of internal code cleaning
* Better code generation for regular loops
* MacOS install guide & ArchLinux packages
* Travis run the test suite, w and w/ SIMD, w and w/ OpenMP
* Many performance improvements at the numpy expression level
* Faster array copies, including slices
* Much better constant folding
* Distutils support through a PythranExtension
* Improve implementation of many numpy functions
* Improve forward substitution
* Use most recent nt2 version
* Make dependency on libgomp optional
2014-05-17 Serge Guelton <[email protected]>
* Improved C++ compilation time (twice as fast)
* Efficient extended slicing
* Support most numpy dtype ([u]int8,..., [u]int64, float32, float64)
* Support indexing array through boolean array
* Add a nice Pythran logo :-)
* Improve validation *a lot*
* Reduce native module loading overhead
* Forward substitution implementation
* More numpy support and *many* bug fixes!
* Remove array auto vectorization/parallelization