-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUC.m
157 lines (115 loc) · 4.42 KB
/
UC.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
%% A Simple Case of Unit Commitment (UC)
% yalmip modeling, gurobi solving
% Dependency libraries: yalmip, gurobi, matpower
% Author: Qingju Luo
% Email: [email protected]
% School of Electric Power Engineering, South China University of Technology
% Integrated Smart Energy System Optimal Operation and Control, ISESOOC
% The author's ability is limited, there will inevitably be errors and inadequacies, please criticize and correct!
% For learning and communication only!!!
% For learning and communication only!!!
% For learning and communication only!!!
clc
clear
define_constants;
mpc = case9;
%% Get Data
baseMVA = mpc.baseMVA;
bus = mpc.bus;
branch = mpc.branch;
gen = mpc.gen;
gencost = mpc.gencost;
nb = size(bus, 1); %% number of buses
nl = size(branch, 1); %% number of branches
ng = size(gen, 1); %% number of dispatchable injections
np = 24; %% number of periods
load_rate = 1 + 0.95 * cos(0:4*pi/(np - 1):4*pi); % load rate
gen(:, RAMP_AGC) = gen(:, PMAX) * 0.01; % ramp rate for load following/AGC (MW/min)
ramp_rate = 60 .* gen(:, RAMP_AGC) / baseMVA; % ramp rate for load following/AGC (p.u./h)
RTmin = [3; 3; 4]; % Minimum runtime
DTmin = [7; 6; 8]; % Minimum downtime
Sg0 = gen(:, GEN_STATUS); % status, > 0 - in service, <= 0 - out of service
Sg0(Sg0 > 0) = 1;
Sg0(Sg0 <= 0) = 0;
Pg0 = gen(:, PG) / baseMVA; % real power output (p.u.)
Pg0 = Pg0 .* Sg0;
Pmax = gen(:, PMAX) / baseMVA; % maximum real power output (p.u.)
Pmin = gen(:, PMIN) / baseMVA; % minimum real power output (p.u.)
% generator costs
Cup = gencost(:, STARTUP); % startup
Cdown = gencost(:, SHUTDOWN); % shutdown
C2 = gencost(:, COST); % quadratic
C1 = gencost(:, COST+1); % linear
C0 = gencost(:, COST+2); % constant
Cg = sparse(gen(:, GEN_BUS), (1:ng)', 1, nb, ng); %% connection matrix for generators & buses
ref = find(bus(:, BUS_TYPE) == REF); % reference bus
Va_ref = bus(ref, VA) * (pi / 180); % reference bus voltage angle (radians)
Pd = bus(:, PD) / baseMVA; % real power demand (p.u.)
Gs = bus(:, GS) / baseMVA; % shunt conductance (p.u. demanded at V = 1.0 p.u.)
% Builds the B matrices and phase shift injections for DC power flow.
[B, Bf, Pbusinj, Pfinj] = makeBdc(baseMVA, bus, branch);
flow_max = branch(:, RATE_A) / baseMVA; % branch flow limit (p.u.)
il = find(flow_max ~= 0); % flow constrained lines
if ~isempty(il)
upf = flow_max(il) - Pfinj(il);
upt = flow_max(il) + Pfinj(il);
end
%% Define variables
Sg = binvar(ng, np, 'full'); % generator state
Up = binvar(ng, np, 'full'); % startup
Dn = binvar(ng, np, 'full'); % shutdown
Pg = sdpvar(ng, np, 'full'); % real power output (p.u.)
Va = sdpvar(nb, np, 'full'); % voltage angle (radians)
%% Define the constraints and objective function
con = [];
obj = 0;
for t = 1:np
%% real power balance
con = con + [Cg * Pg(:, t) == B * Va(:, t) + Pbusinj + Gs + Pd .* load_rate(t)]; %#ok<*NBRAK>
%% reference bus voltage angle constraint
con = con + [Va(ref, t) == Va_ref];
%% flow limit
if ~isempty(il)
con = con + [-upt <= Bf(il, :) * Va(:, t) <= upf]; %#ok<*CHAIN>
end
%% power output limit
con = con + [Pmin .* Sg(:, t) <= Pg(:, t)];
con = con + [Pg(:, t) <= Pmax .* Sg(:, t)];
%% ramp limit
if t > 1
con = con + [-ramp_rate <= Pg(:, t) - Pg(:, t-1) <= ramp_rate];
else
con = con + [-ramp_rate <= Pg(:, t) - Pg0 <= ramp_rate];
end
%% logical constraint
if t > 1
con = con + [Up(:, t) - Dn(:, t) == Sg(:, t) - Sg(:, t-1)];
else
con = con + [Up(:, t) - Dn(:, t) == Sg(:, t) - Sg0];
end
%% minimum runtime and downtime constraints
for i = 1:ng
RTidx = t : -1 : (t - RTmin(i) + 1);
DTidx = t : -1 : (t - DTmin(i) + 1);
RTidx(RTidx < 1) = [];
DTidx(DTidx < 1) = [];
con = con + [sum(Up(i, RTidx), 2) <= Sg(i, t)];
con = con + [sum(Dn(i, DTidx), 2) <= (1 - Sg(i, t))];
end
%% objective function
obj = obj + Pg(:, t)' * (C2 .* Pg(:, t)) + C1' * Pg(:, t) + C0' * Sg(:, t) + ...
Cup' * Up(:, t) + Cdown' * Dn(:, t);
end
%% Solve
ops = sdpsettings('solver', 'gurobi', 'verbose', 2, 'savesolveroutput', 1);
sol = solvesdp(con, obj, ops);
if sol.problem ~= 0
disp(sol.info)
return
end
obj = value(obj);
Sg = value(Sg);
Up = value(Up);
Dn = value(Dn);
Pg = value(Pg);
Va = value(Va);