-
Notifications
You must be signed in to change notification settings - Fork 137
/
Copy pathrand_augment.py
531 lines (431 loc) · 15.7 KB
/
rand_augment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
"""
This implementation is based on
https://github.com/rwightman/pytorch-image-models/blob/master/timm/data/auto_augment.py
pulished under an Apache License 2.0.
COMMENT FROM ORIGINAL:
AutoAugment, RandAugment, and AugMix for PyTorch
This code implements the searched ImageNet policies with various tweaks and
improvements and does not include any of the search code. AA and RA
Implementation adapted from:
https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/autoaugment.py
AugMix adapted from:
https://github.com/google-research/augmix
Papers:
AutoAugment: Learning Augmentation Policies from Data
https://arxiv.org/abs/1805.09501
Learning Data Augmentation Strategies for Object Detection
https://arxiv.org/abs/1906.11172
RandAugment: Practical automated data augmentation...
https://arxiv.org/abs/1909.13719
AugMix: A Simple Data Processing Method to Improve Robustness and
Uncertainty https://arxiv.org/abs/1912.02781
Hacked together by / Copyright 2020 Ross Wightman
"""
import math
import numpy as np
import random
import re
import PIL
from PIL import Image, ImageEnhance, ImageOps
_PIL_VER = tuple([int(x) for x in PIL.__version__.split(".")[:2]])
_FILL = (128, 128, 128)
# This signifies the max integer that the controller RNN could predict for the
# augmentation scheme.
_MAX_LEVEL = 10.0
_HPARAMS_DEFAULT = {
"translate_const": 250,
"img_mean": _FILL,
}
_RANDOM_INTERPOLATION = (Image.BILINEAR, Image.BICUBIC)
def _interpolation(kwargs):
interpolation = kwargs.pop("resample", Image.BILINEAR)
if isinstance(interpolation, (list, tuple)):
return random.choice(interpolation)
else:
return interpolation
def _check_args_tf(kwargs):
if "fillcolor" in kwargs and _PIL_VER < (5, 0):
kwargs.pop("fillcolor")
kwargs["resample"] = _interpolation(kwargs)
def shear_x(img, factor, **kwargs):
_check_args_tf(kwargs)
return img.transform(
img.size, Image.AFFINE, (1, factor, 0, 0, 1, 0), **kwargs
)
def shear_y(img, factor, **kwargs):
_check_args_tf(kwargs)
return img.transform(
img.size, Image.AFFINE, (1, 0, 0, factor, 1, 0), **kwargs
)
def translate_x_rel(img, pct, **kwargs):
pixels = pct * img.size[0]
_check_args_tf(kwargs)
return img.transform(
img.size, Image.AFFINE, (1, 0, pixels, 0, 1, 0), **kwargs
)
def translate_y_rel(img, pct, **kwargs):
pixels = pct * img.size[1]
_check_args_tf(kwargs)
return img.transform(
img.size, Image.AFFINE, (1, 0, 0, 0, 1, pixels), **kwargs
)
def translate_x_abs(img, pixels, **kwargs):
_check_args_tf(kwargs)
return img.transform(
img.size, Image.AFFINE, (1, 0, pixels, 0, 1, 0), **kwargs
)
def translate_y_abs(img, pixels, **kwargs):
_check_args_tf(kwargs)
return img.transform(
img.size, Image.AFFINE, (1, 0, 0, 0, 1, pixels), **kwargs
)
def rotate(img, degrees, **kwargs):
_check_args_tf(kwargs)
if _PIL_VER >= (5, 2):
return img.rotate(degrees, **kwargs)
elif _PIL_VER >= (5, 0):
w, h = img.size
post_trans = (0, 0)
rotn_center = (w / 2.0, h / 2.0)
angle = -math.radians(degrees)
matrix = [
round(math.cos(angle), 15),
round(math.sin(angle), 15),
0.0,
round(-math.sin(angle), 15),
round(math.cos(angle), 15),
0.0,
]
def transform(x, y, matrix):
(a, b, c, d, e, f) = matrix
return a * x + b * y + c, d * x + e * y + f
matrix[2], matrix[5] = transform(
-rotn_center[0] - post_trans[0],
-rotn_center[1] - post_trans[1],
matrix,
)
matrix[2] += rotn_center[0]
matrix[5] += rotn_center[1]
return img.transform(img.size, Image.AFFINE, matrix, **kwargs)
else:
return img.rotate(degrees, resample=kwargs["resample"])
def auto_contrast(img, **__):
return ImageOps.autocontrast(img)
def invert(img, **__):
return ImageOps.invert(img)
def equalize(img, **__):
return ImageOps.equalize(img)
def solarize(img, thresh, **__):
return ImageOps.solarize(img, thresh)
def solarize_add(img, add, thresh=128, **__):
lut = []
for i in range(256):
if i < thresh:
lut.append(min(255, i + add))
else:
lut.append(i)
if img.mode in ("L", "RGB"):
if img.mode == "RGB" and len(lut) == 256:
lut = lut + lut + lut
return img.point(lut)
else:
return img
def posterize(img, bits_to_keep, **__):
if bits_to_keep >= 8:
return img
return ImageOps.posterize(img, bits_to_keep)
def contrast(img, factor, **__):
return ImageEnhance.Contrast(img).enhance(factor)
def color(img, factor, **__):
return ImageEnhance.Color(img).enhance(factor)
def brightness(img, factor, **__):
return ImageEnhance.Brightness(img).enhance(factor)
def sharpness(img, factor, **__):
return ImageEnhance.Sharpness(img).enhance(factor)
def _randomly_negate(v):
"""With 50% prob, negate the value"""
return -v if random.random() > 0.5 else v
def _rotate_level_to_arg(level, _hparams):
# range [-30, 30]
level = (level / _MAX_LEVEL) * 30.0
level = _randomly_negate(level)
return (level,)
def _enhance_level_to_arg(level, _hparams):
# range [0.1, 1.9]
return ((level / _MAX_LEVEL) * 1.8 + 0.1,)
def _enhance_increasing_level_to_arg(level, _hparams):
# the 'no change' level is 1.0, moving away from that towards 0. or 2.0 increases the enhancement blend
# range [0.1, 1.9]
level = (level / _MAX_LEVEL) * 0.9
level = 1.0 + _randomly_negate(level)
return (level,)
def _shear_level_to_arg(level, _hparams):
# range [-0.3, 0.3]
level = (level / _MAX_LEVEL) * 0.3
level = _randomly_negate(level)
return (level,)
def _translate_abs_level_to_arg(level, hparams):
translate_const = hparams["translate_const"]
level = (level / _MAX_LEVEL) * float(translate_const)
level = _randomly_negate(level)
return (level,)
def _translate_rel_level_to_arg(level, hparams):
# default range [-0.45, 0.45]
translate_pct = hparams.get("translate_pct", 0.45)
level = (level / _MAX_LEVEL) * translate_pct
level = _randomly_negate(level)
return (level,)
def _posterize_level_to_arg(level, _hparams):
# As per Tensorflow TPU EfficientNet impl
# range [0, 4], 'keep 0 up to 4 MSB of original image'
# intensity/severity of augmentation decreases with level
return (int((level / _MAX_LEVEL) * 4),)
def _posterize_increasing_level_to_arg(level, hparams):
# As per Tensorflow models research and UDA impl
# range [4, 0], 'keep 4 down to 0 MSB of original image',
# intensity/severity of augmentation increases with level
return (4 - _posterize_level_to_arg(level, hparams)[0],)
def _posterize_original_level_to_arg(level, _hparams):
# As per original AutoAugment paper description
# range [4, 8], 'keep 4 up to 8 MSB of image'
# intensity/severity of augmentation decreases with level
return (int((level / _MAX_LEVEL) * 4) + 4,)
def _solarize_level_to_arg(level, _hparams):
# range [0, 256]
# intensity/severity of augmentation decreases with level
return (int((level / _MAX_LEVEL) * 256),)
def _solarize_increasing_level_to_arg(level, _hparams):
# range [0, 256]
# intensity/severity of augmentation increases with level
return (256 - _solarize_level_to_arg(level, _hparams)[0],)
def _solarize_add_level_to_arg(level, _hparams):
# range [0, 110]
return (int((level / _MAX_LEVEL) * 110),)
LEVEL_TO_ARG = {
"AutoContrast": None,
"Equalize": None,
"Invert": None,
"Rotate": _rotate_level_to_arg,
# There are several variations of the posterize level scaling in various Tensorflow/Google repositories/papers
"Posterize": _posterize_level_to_arg,
"PosterizeIncreasing": _posterize_increasing_level_to_arg,
"PosterizeOriginal": _posterize_original_level_to_arg,
"Solarize": _solarize_level_to_arg,
"SolarizeIncreasing": _solarize_increasing_level_to_arg,
"SolarizeAdd": _solarize_add_level_to_arg,
"Color": _enhance_level_to_arg,
"ColorIncreasing": _enhance_increasing_level_to_arg,
"Contrast": _enhance_level_to_arg,
"ContrastIncreasing": _enhance_increasing_level_to_arg,
"Brightness": _enhance_level_to_arg,
"BrightnessIncreasing": _enhance_increasing_level_to_arg,
"Sharpness": _enhance_level_to_arg,
"SharpnessIncreasing": _enhance_increasing_level_to_arg,
"ShearX": _shear_level_to_arg,
"ShearY": _shear_level_to_arg,
"TranslateX": _translate_abs_level_to_arg,
"TranslateY": _translate_abs_level_to_arg,
"TranslateXRel": _translate_rel_level_to_arg,
"TranslateYRel": _translate_rel_level_to_arg,
}
NAME_TO_OP = {
"AutoContrast": auto_contrast,
"Equalize": equalize,
"Invert": invert,
"Rotate": rotate,
"Posterize": posterize,
"PosterizeIncreasing": posterize,
"PosterizeOriginal": posterize,
"Solarize": solarize,
"SolarizeIncreasing": solarize,
"SolarizeAdd": solarize_add,
"Color": color,
"ColorIncreasing": color,
"Contrast": contrast,
"ContrastIncreasing": contrast,
"Brightness": brightness,
"BrightnessIncreasing": brightness,
"Sharpness": sharpness,
"SharpnessIncreasing": sharpness,
"ShearX": shear_x,
"ShearY": shear_y,
"TranslateX": translate_x_abs,
"TranslateY": translate_y_abs,
"TranslateXRel": translate_x_rel,
"TranslateYRel": translate_y_rel,
}
class AugmentOp:
"""
Apply for video.
"""
def __init__(self, name, prob=0.5, magnitude=10, hparams=None):
hparams = hparams or _HPARAMS_DEFAULT
self.aug_fn = NAME_TO_OP[name]
self.level_fn = LEVEL_TO_ARG[name]
self.prob = prob
self.magnitude = magnitude
self.hparams = hparams.copy()
self.kwargs = {
"fillcolor": hparams["img_mean"]
if "img_mean" in hparams
else _FILL,
"resample": hparams["interpolation"]
if "interpolation" in hparams
else _RANDOM_INTERPOLATION,
}
# If magnitude_std is > 0, we introduce some randomness
# in the usually fixed policy and sample magnitude from a normal distribution
# with mean `magnitude` and std-dev of `magnitude_std`.
# NOTE This is my own hack, being tested, not in papers or reference impls.
self.magnitude_std = self.hparams.get("magnitude_std", 0)
def __call__(self, img_list):
if self.prob < 1.0 and random.random() > self.prob:
return img_list
magnitude = self.magnitude
if self.magnitude_std and self.magnitude_std > 0:
magnitude = random.gauss(magnitude, self.magnitude_std)
magnitude = min(_MAX_LEVEL, max(0, magnitude)) # clip to valid range
level_args = (
self.level_fn(magnitude, self.hparams)
if self.level_fn is not None
else ()
)
if isinstance(img_list, list):
return [
self.aug_fn(img, *level_args, **self.kwargs) for img in img_list
]
else:
return self.aug_fn(img_list, *level_args, **self.kwargs)
_RAND_TRANSFORMS = [
"AutoContrast",
"Equalize",
"Invert",
"Rotate",
"Posterize",
"Solarize",
"SolarizeAdd",
"Color",
"Contrast",
"Brightness",
"Sharpness",
"ShearX",
"ShearY",
"TranslateXRel",
"TranslateYRel",
]
_RAND_INCREASING_TRANSFORMS = [
"AutoContrast",
"Equalize",
"Invert",
"Rotate",
"PosterizeIncreasing",
"SolarizeIncreasing",
"SolarizeAdd",
"ColorIncreasing",
"ContrastIncreasing",
"BrightnessIncreasing",
"SharpnessIncreasing",
"ShearX",
"ShearY",
"TranslateXRel",
"TranslateYRel",
]
# These experimental weights are based loosely on the relative improvements mentioned in paper.
# They may not result in increased performance, but could likely be tuned to so.
_RAND_CHOICE_WEIGHTS_0 = {
"Rotate": 0.3,
"ShearX": 0.2,
"ShearY": 0.2,
"TranslateXRel": 0.1,
"TranslateYRel": 0.1,
"Color": 0.025,
"Sharpness": 0.025,
"AutoContrast": 0.025,
"Solarize": 0.005,
"SolarizeAdd": 0.005,
"Contrast": 0.005,
"Brightness": 0.005,
"Equalize": 0.005,
"Posterize": 0,
"Invert": 0,
}
def _select_rand_weights(weight_idx=0, transforms=None):
transforms = transforms or _RAND_TRANSFORMS
assert weight_idx == 0 # only one set of weights currently
rand_weights = _RAND_CHOICE_WEIGHTS_0
probs = [rand_weights[k] for k in transforms]
probs /= np.sum(probs)
return probs
def rand_augment_ops(magnitude=10, hparams=None, transforms=None):
hparams = hparams or _HPARAMS_DEFAULT
transforms = transforms or _RAND_TRANSFORMS
return [
AugmentOp(name, prob=0.5, magnitude=magnitude, hparams=hparams)
for name in transforms
]
class RandAugment:
def __init__(self, ops, num_layers=2, choice_weights=None):
self.ops = ops
self.num_layers = num_layers
self.choice_weights = choice_weights
def __call__(self, img):
# no replacement when using weighted choice
ops = np.random.choice(
self.ops,
self.num_layers,
replace=self.choice_weights is None,
p=self.choice_weights,
)
for op in ops:
img = op(img)
return img
def rand_augment_transform(config_str, hparams):
"""
RandAugment: Practical automated data augmentation... - https://arxiv.org/abs/1909.13719
Create a RandAugment transform
:param config_str: String defining configuration of random augmentation. Consists of multiple sections separated by
dashes ('-'). The first section defines the specific variant of rand augment (currently only 'rand'). The remaining
sections, not order sepecific determine
'm' - integer magnitude of rand augment
'n' - integer num layers (number of transform ops selected per image)
'w' - integer probabiliy weight index (index of a set of weights to influence choice of op)
'mstd' - float std deviation of magnitude noise applied
'inc' - integer (bool), use augmentations that increase in severity with magnitude (default: 0)
Ex 'rand-m9-n3-mstd0.5' results in RandAugment with magnitude 9, num_layers 3, magnitude_std 0.5
'rand-mstd1-w0' results in magnitude_std 1.0, weights 0, default magnitude of 10 and num_layers 2
:param hparams: Other hparams (kwargs) for the RandAugmentation scheme
:return: A PyTorch compatible Transform
"""
magnitude = _MAX_LEVEL # default to _MAX_LEVEL for magnitude (currently 10)
num_layers = 2 # default to 2 ops per image
weight_idx = None # default to no probability weights for op choice
transforms = _RAND_TRANSFORMS
config = config_str.split("-")
assert config[0] == "rand"
config = config[1:]
for c in config:
cs = re.split(r"(\d.*)", c)
if len(cs) < 2:
continue
key, val = cs[:2]
if key == "mstd":
# noise param injected via hparams for now
hparams.setdefault("magnitude_std", float(val))
elif key == "inc":
if bool(val):
transforms = _RAND_INCREASING_TRANSFORMS
elif key == "m":
magnitude = int(val)
elif key == "n":
num_layers = int(val)
elif key == "w":
weight_idx = int(val)
else:
assert NotImplementedError
ra_ops = rand_augment_ops(
magnitude=magnitude, hparams=hparams, transforms=transforms
)
choice_weights = (
None if weight_idx is None else _select_rand_weights(weight_idx)
)
return RandAugment(ra_ops, num_layers, choice_weights=choice_weights)