-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstreamlines.py
631 lines (511 loc) · 20.3 KB
/
streamlines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
"""
Streamlines for 2D vector fields.
By: Valentina Vadori
https://stackoverflow.com/questions/75406627/python-streamline-algorithm
"""
import numpy as np
import matplotlib as mpl
from matplotlib import _api, cm, patches
import matplotlib.colors as mcolors
import matplotlib.collections as mcollections
import matplotlib.lines as mlines
__all__ = ['streamplot']
def streamplot2(x, y, u, v, density=1, linewidth=None, color=None,
cmap=None, norm=None, arrowsize=1, arrowstyle='-|>',
minlength=0.1, transform=None, zorder=None, start_points=None,
maxlength=4.0, integration_direction='both',
broken_streamlines=True):
"""
Draw streamlines of a vector flow.
Parameters
----------
x, y : 1D/2D arrays
Evenly spaced strictly increasing arrays to make a grid. If 2D, all
rows of *x* must be equal and all columns of *y* must be equal; i.e.,
they must be as if generated by ``np.meshgrid(x_1d, y_1d)``.
u, v : 2D arrays
*x* and *y*-velocities. The number of rows and columns must match
the length of *y* and *x*, respectively.
density : float or (float, float)
Controls the closeness of streamlines. When ``density = 1``, the domain
is divided into a 30x30 grid. *density* linearly scales this grid.
Each cell in the grid can have, at most, one traversing streamline.
For different densities in each direction, use a tuple
(density_x, density_y).
linewidth : float or 2D array
The width of the streamlines. With a 2D array the line width can be
varied across the grid. The array must have the same shape as *u*
and *v*.
color : color or 2D array
The streamline color. If given an array, its values are converted to
colors using *cmap* and *norm*. The array must have the same shape
as *u* and *v*.
cmap, norm
Data normalization and colormapping parameters for *color*; only used
if *color* is an array of floats. See `~.Axes.imshow` for a detailed
description.
arrowsize : float
Scaling factor for the arrow size.
arrowstyle : str
Arrow style specification.
See `~matplotlib.patches.FancyArrowPatch`.
minlength : float
Minimum length of streamline in axes coordinates.
start_points : (N, 2) array
Coordinates of starting points for the streamlines in data coordinates
(the same coordinates as the *x* and *y* arrays).
zorder : float
The zorder of the streamlines and arrows.
Artists with lower zorder values are drawn first.
maxlength : float
Maximum length of streamline in axes coordinates.
integration_direction : {'forward', 'backward', 'both'}, default: 'both'
Integrate the streamline in forward, backward or both directions.
data : indexable object, optional
DATA_PARAMETER_PLACEHOLDER
broken_streamlines : boolean, default: True
If False, forces streamlines to continue until they
leave the plot domain. If True, they may be terminated if they
come too close to another streamline.
Returns
-------
StreamplotSet
Container object with attributes
- ``lines``: `.LineCollection` of streamlines
- ``arrows``: `.PatchCollection` containing `.FancyArrowPatch`
objects representing the arrows half-way along streamlines.
This container will probably change in the future to allow changes
to the colormap, alpha, etc. for both lines and arrows, but these
changes should be backward compatible.
"""
grid = Grid(x, y)
mask = StreamMask(density)
dmap = DomainMap(grid, mask)
u = np.ma.masked_invalid(u)
v = np.ma.masked_invalid(v)
integrate = _get_integrator(u, v, dmap, minlength, maxlength,
integration_direction)
trajectories = []
if start_points is None:
for xm, ym in _gen_starting_points(mask.shape):
if mask[ym, xm] == 0:
xg, yg = dmap.mask2grid(xm, ym)
t = integrate(xg, yg, broken_streamlines)
if t is not None:
trajectories.append(t)
else:
sp2 = np.asanyarray(start_points, dtype=float).copy()
# Check if start_points are outside the data boundaries
for xs, ys in sp2:
if not (grid.x_origin <= xs <= grid.x_origin + grid.width and
grid.y_origin <= ys <= grid.y_origin + grid.height):
raise ValueError(f"Starting point ({xs}, {ys}) outside of "
"data boundaries")
# Convert start_points from data to array coords
# Shift the seed points from the bottom left of the data so that
# data2grid works properly.
sp2[:, 0] -= grid.x_origin
sp2[:, 1] -= grid.y_origin
for xs, ys in sp2:
xg, yg = dmap.data2grid(xs, ys)
# Floating point issues can cause xg, yg to be slightly out of
# bounds for xs, ys on the upper boundaries. Because we have
# already checked that the starting points are within the original
# grid, clip the xg, yg to the grid to work around this issue
xg = np.clip(xg, 0, grid.nx - 1)
yg = np.clip(yg, 0, grid.ny - 1)
t = integrate(xg, yg, broken_streamlines)
if t is not None:
trajectories.append(t)
streamlines = []
for t in trajectories:
tgx, tgy = t.T
# Rescale from grid-coordinates to data-coordinates.
tx, ty = dmap.grid2data(tgx, tgy)
tx += grid.x_origin
ty += grid.y_origin
points = np.transpose([tx, ty])
streamlines.append(points)
return streamlines
class StreamplotSet:
def __init__(self, lines, arrows):
self.lines = lines
self.arrows = arrows
# Coordinate definitions
# ========================
class DomainMap:
"""
Map representing different coordinate systems.
Coordinate definitions:
* axes-coordinates goes from 0 to 1 in the domain.
* data-coordinates are specified by the input x-y coordinates.
* grid-coordinates goes from 0 to N and 0 to M for an N x M grid,
where N and M match the shape of the input data.
* mask-coordinates goes from 0 to N and 0 to M for an N x M mask,
where N and M are user-specified to control the density of streamlines.
This class also has methods for adding trajectories to the StreamMask.
Before adding a trajectory, run `start_trajectory` to keep track of regions
crossed by a given trajectory. Later, if you decide the trajectory is bad
(e.g., if the trajectory is very short) just call `undo_trajectory`.
"""
def __init__(self, grid, mask):
self.grid = grid
self.mask = mask
# Constants for conversion between grid- and mask-coordinates
self.x_grid2mask = (mask.nx - 1) / (grid.nx - 1)
self.y_grid2mask = (mask.ny - 1) / (grid.ny - 1)
self.x_mask2grid = 1. / self.x_grid2mask
self.y_mask2grid = 1. / self.y_grid2mask
self.x_data2grid = 1. / grid.dx
self.y_data2grid = 1. / grid.dy
def grid2mask(self, xi, yi):
"""Return nearest space in mask-coords from given grid-coords."""
return round(xi * self.x_grid2mask), round(yi * self.y_grid2mask)
def mask2grid(self, xm, ym):
return xm * self.x_mask2grid, ym * self.y_mask2grid
def data2grid(self, xd, yd):
return xd * self.x_data2grid, yd * self.y_data2grid
def grid2data(self, xg, yg):
return xg / self.x_data2grid, yg / self.y_data2grid
def start_trajectory(self, xg, yg, broken_streamlines=True):
xm, ym = self.grid2mask(xg, yg)
self.mask._start_trajectory(xm, ym, broken_streamlines)
def reset_start_point(self, xg, yg):
xm, ym = self.grid2mask(xg, yg)
self.mask._current_xy = (xm, ym)
def update_trajectory(self, xg, yg, broken_streamlines=True):
if not self.grid.within_grid(xg, yg):
raise InvalidIndexError
xm, ym = self.grid2mask(xg, yg)
self.mask._update_trajectory(xm, ym, broken_streamlines)
def undo_trajectory(self):
self.mask._undo_trajectory()
class Grid:
"""Grid of data."""
def __init__(self, x, y):
if np.ndim(x) == 1:
pass
elif np.ndim(x) == 2:
x_row = x[0]
if not np.allclose(x_row, x):
raise ValueError("The rows of 'x' must be equal")
x = x_row
else:
raise ValueError("'x' can have at maximum 2 dimensions")
if np.ndim(y) == 1:
pass
elif np.ndim(y) == 2:
yt = np.transpose(y) # Also works for nested lists.
y_col = yt[0]
if not np.allclose(y_col, yt):
raise ValueError("The columns of 'y' must be equal")
y = y_col
else:
raise ValueError("'y' can have at maximum 2 dimensions")
if not (np.diff(x) > 0).all():
raise ValueError("'x' must be strictly increasing")
if not (np.diff(y) > 0).all():
raise ValueError("'y' must be strictly increasing")
self.nx = len(x)
self.ny = len(y)
self.dx = x[1] - x[0]
self.dy = y[1] - y[0]
self.x_origin = x[0]
self.y_origin = y[0]
self.width = x[-1] - x[0]
self.height = y[-1] - y[0]
if not np.allclose(np.diff(x), self.width / (self.nx - 1)):
raise ValueError("'x' values must be equally spaced")
if not np.allclose(np.diff(y), self.height / (self.ny - 1)):
raise ValueError("'y' values must be equally spaced")
@property
def shape(self):
return self.ny, self.nx
def within_grid(self, xi, yi):
"""Return whether (*xi*, *yi*) is a valid index of the grid."""
# Note that xi/yi can be floats; so, for example, we can't simply check
# `xi < self.nx` since *xi* can be `self.nx - 1 < xi < self.nx`
return 0 <= xi <= self.nx - 1 and 0 <= yi <= self.ny - 1
class StreamMask:
"""
Mask to keep track of discrete regions crossed by streamlines.
The resolution of this grid determines the approximate spacing between
trajectories. Streamlines are only allowed to pass through zeroed cells:
When a streamline enters a cell, that cell is set to 1, and no new
streamlines are allowed to enter.
"""
def __init__(self, density):
try:
self.nx, self.ny = (30 * np.broadcast_to(density, 2)).astype(int)
except ValueError as err:
raise ValueError("'density' must be a scalar or be of length "
"2") from err
if self.nx < 0 or self.ny < 0:
raise ValueError("'density' must be positive")
self._mask = np.zeros((self.ny, self.nx))
self.shape = self._mask.shape
self._current_xy = None
def __getitem__(self, args):
return self._mask[args]
def _start_trajectory(self, xm, ym, broken_streamlines=True):
"""Start recording streamline trajectory"""
self._traj = []
self._update_trajectory(xm, ym, broken_streamlines)
def _undo_trajectory(self):
"""Remove current trajectory from mask"""
for t in self._traj:
self._mask[t] = 0
def _update_trajectory(self, xm, ym, broken_streamlines=True):
"""
Update current trajectory position in mask.
If the new position has already been filled, raise `InvalidIndexError`.
"""
if self._current_xy != (xm, ym):
if self[ym, xm] == 0:
self._traj.append((ym, xm))
self._mask[ym, xm] = 1
self._current_xy = (xm, ym)
else:
if broken_streamlines:
raise InvalidIndexError
else:
pass
class InvalidIndexError(Exception):
pass
class TerminateTrajectory(Exception):
pass
# Integrator definitions
# =======================
def _get_integrator(u, v, dmap, minlength, maxlength, integration_direction):
# rescale velocity onto grid-coordinates for integrations.
u, v = dmap.data2grid(u, v)
# speed (path length) will be in axes-coordinates
u_ax = u / (dmap.grid.nx - 1)
v_ax = v / (dmap.grid.ny - 1)
speed = np.ma.sqrt(u_ax ** 2 + v_ax ** 2)
#print("speed", speed)
def forward_time(xi, yi):
if not dmap.grid.within_grid(xi, yi):
raise OutOfBounds
#print("xi",xi)
#print("yi",yi)
ds_dt = interpgrid(speed, xi, yi)
if ds_dt == 0:
#print("ds_dt", ds_dt)
raise TerminateTrajectory()
dt_ds = 1. / ds_dt
ui = interpgrid(u, xi, yi)
vi = interpgrid(v, xi, yi)
return ui * dt_ds, vi * dt_ds
def backward_time(xi, yi):
dxi, dyi = forward_time(xi, yi)
return -dxi, -dyi
def integrate(x0, y0, broken_streamlines=True):
"""
Return x, y grid-coordinates of trajectory based on starting point.
Integrate both forward and backward in time from starting point in
grid coordinates.
Integration is terminated when a trajectory reaches a domain boundary
or when it crosses into an already occupied cell in the StreamMask. The
resulting trajectory is None if it is shorter than `minlength`.
"""
stotal, xy_traj = 0., []
try:
dmap.start_trajectory(x0, y0, broken_streamlines)
except InvalidIndexError:
return None
if integration_direction in ['both', 'backward']:
s, xyt = _integrate_rk12(x0, y0, dmap, backward_time, maxlength,
broken_streamlines)
stotal += s
xy_traj += xyt[::-1]
if integration_direction in ['both', 'forward']:
dmap.reset_start_point(x0, y0)
s, xyt = _integrate_rk12(x0, y0, dmap, forward_time, maxlength,
broken_streamlines)
stotal += s
xy_traj += xyt[1:]
if stotal > minlength:
return np.broadcast_arrays(xy_traj, np.empty((1, 2)))[0]
else: # reject short trajectories
dmap.undo_trajectory()
return None
return integrate
class OutOfBounds(IndexError):
pass
def _integrate_rk12(x0, y0, dmap, f, maxlength, broken_streamlines=True):
"""
2nd-order Runge-Kutta algorithm with adaptive step size.
This method is also referred to as the improved Euler's method, or Heun's
method. This method is favored over higher-order methods because:
1. To get decent looking trajectories and to sample every mask cell
on the trajectory we need a small timestep, so a lower order
solver doesn't hurt us unless the data is *very* high resolution.
In fact, for cases where the user inputs
data smaller or of similar grid size to the mask grid, the higher
order corrections are negligible because of the very fast linear
interpolation used in `interpgrid`.
2. For high resolution input data (i.e. beyond the mask
resolution), we must reduce the timestep. Therefore, an adaptive
timestep is more suited to the problem as this would be very hard
to judge automatically otherwise.
This integrator is about 1.5 - 2x as fast as RK4 and RK45 solvers (using
similar Python implementations) in most setups.
"""
# This error is below that needed to match the RK4 integrator. It
# is set for visual reasons -- too low and corners start
# appearing ugly and jagged. Can be tuned.
maxerror = 0.003
# This limit is important (for all integrators) to avoid the
# trajectory skipping some mask cells. We could relax this
# condition if we use the code which is commented out below to
# increment the location gradually. However, due to the efficient
# nature of the interpolation, this doesn't boost speed by much
# for quite a bit of complexity.
#print("dmap.mask.nx", dmap.mask.nx)
#maxds = min(1. / dmap.mask.nx, 1. / dmap.mask.ny, 0.1)
maxds = 0.01
ds = maxds
print("ds", ds)
stotal = 0
xi = x0
yi = y0
xyf_traj = []
while True:
try:
if dmap.grid.within_grid(xi, yi):
xyf_traj.append((xi, yi))
else:
raise OutOfBounds
# Compute the two intermediate gradients.
# f should raise OutOfBounds if the locations given are
# outside the grid.
k1x, k1y = f(xi, yi)
k2x, k2y = f(xi + ds * k1x, yi + ds * k1y)
except OutOfBounds:
# Out of the domain during this step.
# Take an Euler step to the boundary to improve neatness
# unless the trajectory is currently empty.
if xyf_traj:
ds, xyf_traj = _euler_step(xyf_traj, dmap, f)
stotal += ds
break
except TerminateTrajectory:
break
dx1 = ds * k1x
dy1 = ds * k1y
dx2 = ds * 0.5 * (k1x + k2x)
dy2 = ds * 0.5 * (k1y + k2y)
ny, nx = dmap.grid.shape
# Error is normalized to the axes coordinates
error = np.hypot((dx2 - dx1) / (nx - 1), (dy2 - dy1) / (ny - 1))
print("error",error)
# Only save step if within error tolerance
if error < maxerror:
xi += dx2
yi += dy2
try:
dmap.update_trajectory(xi, yi, broken_streamlines)
except InvalidIndexError:
break
if stotal + ds > maxlength:
break
stotal += ds
# recalculate stepsize based on step error
if error == 0:
ds = maxds
else:
ds = min(maxds, 0.85 * ds * (maxerror / error) ** 0.5)
return stotal, xyf_traj
def _euler_step(xyf_traj, dmap, f):
"""Simple Euler integration step that extends streamline to boundary."""
ny, nx = dmap.grid.shape
xi, yi = xyf_traj[-1]
cx, cy = f(xi, yi)
if cx == 0:
dsx = np.inf
elif cx < 0:
dsx = xi / -cx
else:
dsx = (nx - 1 - xi) / cx
if cy == 0:
dsy = np.inf
elif cy < 0:
dsy = yi / -cy
else:
dsy = (ny - 1 - yi) / cy
ds = min(dsx, dsy)
xyf_traj.append((xi + cx * ds, yi + cy * ds))
return ds, xyf_traj
# Utility functions
# ========================
def interpgrid(a, xi, yi):
"""Fast 2D, linear interpolation on an integer grid"""
Ny, Nx = np.shape(a)
if isinstance(xi, np.ndarray):
x = xi.astype(int)
y = yi.astype(int)
# Check that xn, yn don't exceed max index
xn = np.clip(x + 1, 0, Nx - 1)
yn = np.clip(y + 1, 0, Ny - 1)
else:
x = int(xi)
y = int(yi)
# conditional is faster than clipping for integers
if x == (Nx - 1):
xn = x
else:
xn = x + 1
if y == (Ny - 1):
yn = y
else:
yn = y + 1
a00 = a[y, x]
a01 = a[y, xn]
a10 = a[yn, x]
a11 = a[yn, xn]
xt = xi - x
yt = yi - y
a0 = a00 * (1 - xt) + a01 * xt
a1 = a10 * (1 - xt) + a11 * xt
ai = a0 * (1 - yt) + a1 * yt
if not isinstance(xi, np.ndarray):
if np.ma.is_masked(ai):
raise TerminateTrajectory
return ai
def _gen_starting_points(shape):
"""
Yield starting points for streamlines.
Trying points on the boundary first gives higher quality streamlines.
This algorithm starts with a point on the mask corner and spirals inward.
This algorithm is inefficient, but fast compared to rest of streamplot.
"""
ny, nx = shape
xfirst = 0
yfirst = 1
xlast = nx - 1
ylast = ny - 1
x, y = 0, 0
direction = 'right'
for i in range(nx * ny):
yield x, y
if direction == 'right':
x += 1
if x >= xlast:
xlast -= 1
direction = 'up'
elif direction == 'up':
y += 1
if y >= ylast:
ylast -= 1
direction = 'left'
elif direction == 'left':
x -= 1
if x <= xfirst:
xfirst += 1
direction = 'down'
elif direction == 'down':
y -= 1
if y <= yfirst:
yfirst += 1
direction = 'right'