-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproject_ex2.py
103 lines (84 loc) · 3.49 KB
/
project_ex2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import scipy.io
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx
mat = scipy.io.loadmat('market.mat')
dataset = mat['DI'].T
def equation(X, Y, Z):
"""Applying the formula"""
N, T = np.shape(X)
DI_sum = 0
for t in range(2, T + 1):
cov1 = np.zeros((N, t + 10 * (t - 1)))
cov1[:, :t] = Y[:, :t]
for z in range(10):
cov1[:, t + z * (t - 1): t + (z + 1) * (t - 1)] = Z[z][:, :(t - 1)]
det_cov1 = np.linalg.det(np.cov(cov1.T))
cov2 = np.zeros((N, 12 * (t - 1)))
cov2[:, :(t - 1)] = X[:, :(t - 1)]
cov2[:, (t - 1):(2 * (t - 1))] = Y[:, :(t - 1)]
for z in range(10):
cov2[:, ((z + 2) * (t - 1)): (z + 3) * (t - 1)] = Z[z][:, :(t - 1)]
det_cov2 = np.linalg.det(np.cov(cov2.T))
cov3 = np.zeros((N, 11 * (t - 1)))
cov3[:, :(t - 1)] = Y[:, :(t - 1)]
for z in range(10):
cov3[:, ((z + 1) * (t - 1)): (z + 2) * (t - 1)] = Z[z][:, :(t - 1)]
det_cov3 = np.linalg.det(np.cov(cov3.T))
cov4 = np.zeros((N, t + 11 * (t - 1)))
cov4[:, :(t - 1)] = X[:, :(t - 1)]
cov4[:, (t - 1):(2 * t - 1)] = Y[:, :t]
for z in range(10):
cov4[:, t + (z + 1) * (t - 1): t + (z + 2) * (t - 1)] = Z[z][:, :(t - 1)]
det_cov4 = np.linalg.det(np.cov(cov4.T))
DI_sum += 0.5 * np.log((det_cov1 / det_cov3) * (det_cov2 / det_cov4))
return DI_sum
def diff(list1, list2):
"""gives back the the values not present in both the two lists given as input"""
return list(set(list1).symmetric_difference(set(list2)))
def apply_DI(i, j, data):
"""function that applies the formula on the dataset"""
ent = 0
X = data[i]
Y = data[j]
Z = np.zeros((10, 190, 7))
variables = list(range(len(data)))
conditional_subset = diff([i, j], variables)
for k in conditional_subset:
Z[ent] = data[k]
ent += 1
return equation(X, Y, Z)
def DI_matrix(data):
"""function that performs the formula for each variable and gives back the matrix with the results"""
empthy_matrix = np.zeros((12, 12))
variables = list(range(len(data)))
for ent in variables:
to_vertex = diff([ent], variables)
for vertex in to_vertex:
empthy_matrix[ent, vertex] = apply_DI(ent, vertex, data)
return empthy_matrix
def matrix_for_graph(matrix):
"""function that takes the DI_matrix and applies the trashold of 0.5 to get a useful adjacency matrix"""
output = matrix.copy()
for line in range(len(matrix)):
for value in range(len(matrix[line])):
if matrix[line, value] >= 0.5:
output[line, value] = 1
else:
output[line, value] = 0
return output
def show_directed_graph(adjacency_matrix: np.matrix, title: str):
"""Returns the graphical representation of the directed adjacency matrix"""
rows, cols = np.where(adjacency_matrix == 1)
edges = zip(rows.tolist(), cols.tolist())
gr = nx.DiGraph()
gr.add_nodes_from(list(range(len(adjacency_matrix))))
gr.add_edges_from(edges)
pos = nx.spring_layout(gr, k=0.5)
nx.draw(gr, pos, node_size=400, with_labels=True)
plt.savefig(title)
plt.show()
if __name__ == '__main__':
matrix_DI = DI_matrix(dataset)
np.savetxt("DI_matrix_for_graph.csv", matrix_DI, fmt="%.3f")
show_directed_graph(matrix_for_graph(matrix_DI), "DI_matrix.png")