-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdrive_models.py
108 lines (90 loc) · 3.2 KB
/
drive_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
"""
TODO: Write docstring
"""
from abc import ABC, abstractmethod
from tensorflow.keras.models import load_model
import cv2
import numpy as np
class ModelInterface(ABC):
"""
TODO: Write docstring
"""
@abstractmethod
def load_model(self, path):
pass
@abstractmethod
def get_prediction(self, images, info):
pass
class CNNKeras(ModelInterface):
"""
TODO: Write docstring
"""
def __init__(self):
self._model = None
self._one_hot_hlc = [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]
def load_model(self, path):
self._model = load_model(path)
def get_prediction(self, images, info):
if self._model is None:
return False
img_input = cv2.cvtColor(images["rgb_center"], cv2.COLOR_BGR2LAB)
info_input = [
info["speed"] / 100,
info["speed_limit"] / 100,
1 if info["traffic_light"] == 2 else 0,
]
hlc_input = self._one_hot_hlc[int(info["hlc"])]
prediction = self._model.predict(
[np.array([img_input]), np.array([info_input]), np.array([hlc_input])]
)
prediction = prediction[0]
steer = prediction[0]
throttle = prediction[1]
brake = prediction[2]
return (steer, throttle, brake)
class LSTMKeras(ModelInterface):
"""
TODO: Write docstring
"""
def __init__(self, seq_length, seq_space, late_hlc=False):
self._model = None
self._img_history = []
self._info_history = []
self._hlc_history = []
self._late_hlc = late_hlc
self._seq_length = seq_length
self._seq_space = seq_space
self._one_hot_hlc = [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]
def load_model(self, path):
self._model = load_model(path)
def get_prediction(self, images, info):
if self._model is None:
return False
img_input = cv2.cvtColor(images["rgb_center"], cv2.COLOR_BGR2LAB)
info_input = [
info["speed"] / 100,
info["speed_limit"] / 100,
1 if info["traffic_light"] == 2 else 0,
]
hlc_input = self._one_hot_hlc[int(info["hlc"])]
self._img_history.append(np.array(img_input))
self._info_history.append(np.array(info_input))
self._hlc_history.append(np.array(hlc_input))
req = (self._seq_length - 1) * (self._seq_space + 1)
if len(self._img_history) > req:
start = len(self._img_history) - 1 - req
imgs = np.array([self._img_history[start :: self._seq_space + 1]])
infos = np.array([self._info_history[start :: self._seq_space + 1]])
if self._late_hlc:
hlcs = np.array([self._hlc_history[-1]])
else:
hlcs = np.array([self._hlc_history[start :: self._seq_space + 1]])
prediction = self._model.predict(
{"image_input": imgs, "info_input": infos, "hlc_input": hlcs}
)
prediction = prediction[0]
steer = prediction[0]
throttle = prediction[1]
brake = prediction[2]
return (steer, throttle, brake)
return (0, 0, 0)