forked from dlunion/tensorRTIntegrate
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDCNv2.cu
409 lines (339 loc) · 14.3 KB
/
DCNv2.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
#include "DCNv2.hpp"
#include <common/json.hpp>
#include <cublas_v2.h>
typedef TRTInfer::halfloat halfloat;
#define cublasCheck(op) \
do { \
auto ret = (op); \
if (ret != CUBLAS_STATUS_SUCCESS) { \
INFO("%s fail, %d != %d", #op, ret, CUBLAS_STATUS_SUCCESS); \
abort(); \
} \
} while (0);
template<typename _T>
static __global__ void sigmoidKernel(_T* input, _T* output, int edge);
template<>
__global__ void sigmoidKernel(float* input, float* output, int edge) {
KERNEL_POSITION;
output[position] = 1 / (1 + exp(-input[position]));
}
template<>
__global__ void sigmoidKernel(halfloat* input, halfloat* output, int edge) {
KERNEL_POSITION;
halfloat one = 1.0f;
output[position] = one / (one + hexp(-input[position]));
}
static __device__ float dmcnIm2colBilinearFP32(const float *bottom_data, const int data_width,
const int height, const int width, float h, float w)
{
int h_low = floor(h);
int w_low = floor(w);
int h_high = h_low + 1;
int w_high = w_low + 1;
float lh = h - h_low;
float lw = w - w_low;
float hh = 1 - lh, hw = 1 - lw;
float v1 = 0;
if (h_low >= 0 && w_low >= 0)
v1 = bottom_data[h_low * data_width + w_low];
float v2 = 0;
if (h_low >= 0 && w_high <= width - 1)
v2 = bottom_data[h_low * data_width + w_high];
float v3 = 0;
if (h_high <= height - 1 && w_low >= 0)
v3 = bottom_data[h_high * data_width + w_low];
float v4 = 0;
if (h_high <= height - 1 && w_high <= width - 1)
v4 = bottom_data[h_high * data_width + w_high];
float w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
float val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
return val;
}
static __device__ halfloat dmcnIm2colBilinearFP16(const halfloat *bottom_data, const int data_width,
const int height, const int width, const halfloat& h, const halfloat& w)
{
int h_low = hfloor(h);
int w_low = hfloor(w);
int h_high = h_low + 1;
int w_high = w_low + 1;
halfloat one = 1.0f;
halfloat h_low_hf = h_low;
halfloat w_low_hf = w_low;
halfloat lh = h - h_low_hf;
halfloat lw = w - w_low_hf;
halfloat hh = one - lh, hw = one - lw;
halfloat zero = 0.0f;
halfloat v1 = zero;
if (h_low >= 0 && w_low >= 0)
v1 = bottom_data[h_low * data_width + w_low];
halfloat v2 = zero;
if (h_low >= 0 && w_high <= width - 1)
v2 = bottom_data[h_low * data_width + w_high];
halfloat v3 = zero;
if (h_high <= height - 1 && w_low >= 0)
v3 = bottom_data[h_high * data_width + w_low];
halfloat v4 = zero;
if (h_high <= height - 1 && w_high <= width - 1)
v4 = bottom_data[h_high * data_width + w_high];
halfloat w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
return (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
}
template<typename _T>
static __global__ void DCNIm2colKernel(
const _T *data_input, const _T *data_offset, const _T *data_mask,
const int height_input, const int width_input, const int kernel_h, const int kernel_w,
const int pad_h, const int pad_w,
const int stride_h, const int stride_w,
const int dilation_h, const int dilation_w,
const int channel_per_deformable_group,
const int batch_size, const int num_channels, const int deformable_group,
const int height_output, const int width_output,
_T *data_output, int edge);
template<>
__global__ void DCNIm2colKernel(
const float *data_input, const float *data_offset, const float *data_mask,
const int height_input, const int width_input, const int kernel_h, const int kernel_w,
const int pad_h, const int pad_w,
const int stride_h, const int stride_w,
const int dilation_h, const int dilation_w,
const int channel_per_deformable_group,
const int batch_size, const int num_channels, const int deformable_group,
const int height_output, const int width_output,
float *data_output, int edge)
{
KERNEL_POSITION;
const int f_area_input = width_input * height_input;
const int f_area_output = width_output * height_output;
// index index of output matrix
const int w_output = position % width_output;
const int h_output = (position / width_output) % height_output;
const int c_input = (position / width_output / height_output) % num_channels;
const int c_output = c_input * kernel_h * kernel_w;
const int deformable_group_index = c_input / channel_per_deformable_group;
const int h_input = h_output * stride_h - pad_h;
const int w_input = w_output * stride_w - pad_w;
int data_output_offset = c_input * kernel_h * kernel_w * f_area_output + h_output * width_output + w_output;
float *data_output_ptr = data_output + data_output_offset;
const float *data_input_ptr = data_input + c_input * f_area_input;
const float *data_offset_ptr = data_offset + deformable_group_index * 2 * kernel_h * kernel_w * f_area_output;
const float *data_mask_ptr = data_mask + deformable_group_index * kernel_h * kernel_w * f_area_output;
for (int i = 0; i < kernel_h; ++i)
{
for (int j = 0; j < kernel_w; ++j)
{
const int row = i + h_input;
const int col = j + w_input;
const int kernel_index = i * kernel_w + j;
const int offset_h_offset = 2 * kernel_index * f_area_output + h_output * width_output + w_output;
const int offset_w_offset = (2 * kernel_index + 1) * f_area_output + h_output * width_output + w_output;
const int mask_offset = kernel_index * f_area_output + h_output * width_output + w_output;
const float offset_h = data_offset_ptr[offset_h_offset];
const float offset_w = data_offset_ptr[offset_w_offset];
const float mask = data_mask_ptr[mask_offset];
float val = 0;
const float h_im = h_input + i * dilation_h + offset_h;
const float w_im = w_input + j * dilation_w + offset_w;
if (h_im > -1 && w_im > -1 && h_im < height_input && w_im < width_input)
{
val = dmcnIm2colBilinearFP32(data_input_ptr, width_input, height_input, width_input, h_im, w_im);
}
*data_output_ptr = val * mask;
data_output_ptr += f_area_output;
}
}
}
template<>
__global__ void DCNIm2colKernel(
const halfloat *data_input, const halfloat *data_offset, const halfloat *data_mask,
const int height_input, const int width_input, const int kernel_h, const int kernel_w,
const int pad_h, const int pad_w,
const int stride_h, const int stride_w,
const int dilation_h, const int dilation_w,
const int channel_per_deformable_group,
const int batch_size, const int num_channels, const int deformable_group,
const int height_output, const int width_output,
halfloat *data_output, int edge)
{
KERNEL_POSITION;
const int f_area_input = width_input * height_input;
const int f_area_output = width_output * height_output;
// index index of output matrix
const int w_output = position % width_output;
const int h_output = (position / width_output) % height_output;
const int c_input = (position / width_output / height_output) % num_channels;
const int c_output = c_input * kernel_h * kernel_w;
const int deformable_group_index = c_input / channel_per_deformable_group;
const int h_input = h_output * stride_h - pad_h;
const int w_input = w_output * stride_w - pad_w;
halfloat width_input_hf = __float2half(width_input);
halfloat height_input_hf = __float2half(height_input);
halfloat h_input_hf = __float2half(h_input);
halfloat w_input_hf = __float2half(w_input);
halfloat dilation_h_hf = __float2half(dilation_h);
halfloat dilation_w_hf = __float2half(dilation_w);
int data_output_offset = c_input * kernel_h * kernel_w * f_area_output + h_output * width_output + w_output;
halfloat *data_output_ptr = data_output + data_output_offset;
const halfloat *data_input_ptr = data_input + c_input * f_area_input;
const halfloat *data_offset_ptr = data_offset + deformable_group_index * 2 * kernel_h * kernel_w * f_area_output;
const halfloat *data_mask_ptr = data_mask + deformable_group_index * kernel_h * kernel_w * f_area_output;
halfloat n_one = -1.0f;
halfloat zero = 0.0f;
for (int i = 0; i < kernel_h; ++i)
{
for (int j = 0; j < kernel_w; ++j)
{
halfloat i_hf = __float2half(i);
halfloat j_hf = __float2half(j);
const int row = i + h_input;
const int col = j + w_input;
const int kernel_index = i * kernel_w + j;
const int offset_h_offset = 2 * kernel_index * f_area_output + h_output * width_output + w_output;
const int offset_w_offset = (2 * kernel_index + 1) * f_area_output + h_output * width_output + w_output;
const int mask_offset = kernel_index * f_area_output + h_output * width_output + w_output;
const halfloat offset_h = data_offset_ptr[offset_h_offset];
const halfloat offset_w = data_offset_ptr[offset_w_offset];
const halfloat mask = data_mask_ptr[mask_offset];
halfloat val = zero;
halfloat h_im = h_input_hf + i_hf * dilation_h_hf + offset_h;
halfloat w_im = w_input_hf + j_hf * dilation_w_hf + offset_w;
if (h_im > n_one && w_im > n_one && h_im < height_input_hf && w_im < width_input_hf)
{
val = dmcnIm2colBilinearFP16(data_input_ptr, width_input_hf, height_input_hf, width_input_hf, h_im, w_im);
}
*data_output_ptr = val * mask;
data_output_ptr += f_area_output;
}
}
}
template<typename _T>
static __global__ void biasKernel(_T* data_input, const _T* bias, const int f_area, int edge) {
KERNEL_POSITION;
int bias_index = position / f_area;
data_input[position] += bias[bias_index];
}
template<typename _T>
inline void segemm_native(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m,
int n,
int k,
float alpha, /* host or device pointer */
const _T *A,
int lda,
const _T *B,
int ldb,
float beta, /* host or device pointer */
_T *C,
int ldc);
template<>
inline void segemm_native<float>(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m,
int n,
int k,
float alpha, /* host or device pointer */
const float *A,
int lda,
const float *B,
int ldb,
float beta, /* host or device pointer */
float *C,
int ldc) {
cublasCheck(cublasSgemm(handle, transa, transb, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc));
//cublasCheck(cublasGemmEx(handle, transa, transb, m, n, k, &alpha, A, CUDA_R_32F, lda, B, CUDA_R_32F, ldb, &beta, C, CUDA_R_32F, ldc, CUDA_R_32F, CUBLAS_GEMM_DFALT));
}
template<>
inline void segemm_native<TRTInfer::halfloat>(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m,
int n,
int k,
float alpha,
const TRTInfer::halfloat *A,
int lda,
const TRTInfer::halfloat *B,
int ldb,
float beta,
TRTInfer::halfloat *C,
int ldc) {
auto halpha = TRTInfer::halfloat(alpha);
auto hbeta = TRTInfer::halfloat(beta);
//cublasCheck(cublasHgemm(handle, transa, transb, m, n, k, &halpha, A, lda, B, ldb, &hbeta, C, ldc));
cublasCheck(cublasGemmEx(handle, transa, transb, m, n, k, &halpha, A, CUDA_R_16F, lda, B, CUDA_R_16F, ldb, &hbeta, C, CUDA_R_16F, ldc, CUDA_R_16F, CUBLAS_GEMM_DFALT));
}
template<typename _T>
static void enqueue_native(cublasHandle_t handle, const std::vector<GTensor>& inputs, std::vector<GTensor>& outputs, const std::vector<GTensor>& weights, void* workspace, cudaStream_t stream) {
auto& data = inputs[0];
auto& om = inputs[1];
auto& out = outputs[0];
int kernel_size = weights[0].width_;
int deformable_group = 1;
size_t maskSize = (size_t)data.height_ * data.width_ * kernel_size * kernel_size * deformable_group;
size_t im2colSize = (size_t)data.channel_ * kernel_size * kernel_size * out.height_ * out.width_;
const int m = out.channel_;
const int n = out.count(2);
const int k = data.channel_ * kernel_size * kernel_size;
float alpha = 1.0;
float beta = 0.0;
cublasCheck(cublasSetStream(handle, stream));
for (int ibatch = 0; ibatch < data.num_; ++ibatch) {
_T* maskWorkspacePtr = (_T*)workspace + (maskSize + im2colSize) * ibatch;
_T* im2colWorkspacePtr = (_T*)workspace + (maskSize + im2colSize) * ibatch + maskSize;
_T* inputMask = om.ptr<_T>(ibatch, om.channel_ / 3 * 2);
ExecuteKernel(maskSize, sigmoidKernel, stream)(inputMask, maskWorkspacePtr, maskSize);
_T* datainput = data.ptr<_T>(ibatch);
_T* offset = om.ptr<_T>(ibatch);
ExecuteKernel(im2colSize, DCNIm2colKernel, stream)(
datainput, offset, maskWorkspacePtr, data.height_, data.width_, kernel_size, kernel_size, 1, 1, 1, 1, 1, 1, data.channel_, data.num_, data.channel_, deformable_group,
out.height_, out.width_, im2colWorkspacePtr, im2colSize);
_T* weightKernel = weights[0].ptr<_T>();
segemm_native(handle, CUBLAS_OP_N, CUBLAS_OP_N, n, m, k, alpha, im2colWorkspacePtr, n, weightKernel, k, beta, out.ptr<_T>(ibatch), n);
if (weights.size() > 1) {
_T* weightBias = weights[1].ptr<_T>();
size_t edge = out.count(1);
size_t area = out.count(2);
ExecuteKernel(edge, biasKernel, stream)(out.ptr<_T>(ibatch), weightBias, area, edge);
}
}
}
int DCNv2::initialize(){
cublasCheck(cublasCreate(&cublasHandle_));
return 0;
}
void DCNv2::terminate(){
cublasCheck(cublasDestroy(cublasHandle_));
cublasHandle_ = nullptr;
}
int DCNv2::enqueue(const std::vector<GTensor>& inputs, std::vector<GTensor>& outputs, const std::vector<GTensor>& weights, void* workspace, cudaStream_t stream) {
if (config_->configDataType_ == TRTInfer::DataType::dtFloat) {
enqueue_native<float>(cublasHandle_, inputs, outputs, weights, workspace, stream);
}
else if (config_->configDataType_ == TRTInfer::DataType::dtHalfloat) {
enqueue_native<TRTInfer::halfloat>(cublasHandle_, inputs, outputs, weights, workspace, stream);
}
return 0;
}
nvinfer1::Dims DCNv2::outputDims(int index, const nvinfer1::Dims* inputDims, int nbInputDims) {
//INFO("inputDims = %d, %d, %d, %d, %d", inputDims[0].nbDims, inputDims[0].d[0], inputDims[0].d[1], inputDims[0].d[2], inputDims[0].d[3]);
return nvinfer1::Dims3(config_->weights_[0]->num(), inputDims[0].d[1], inputDims[0].d[2]);
}
size_t DCNv2::getWorkspaceSize(int maxBatchSize) const {
int kernel_size = 3;
int deformable_group = 1;
//inputChannel * k * k * outputHeight * outputWidth
size_t im2colSize = (size_t)config_->input[0].d[0] * kernel_size * kernel_size * config_->output[0].d[1] * config_->output[0].d[2];
size_t maskSize = (size_t)config_->input[0].d[1] * config_->input[0].d[2] * kernel_size * kernel_size * deformable_group;
config_->workspaceSize_ = (im2colSize + maskSize) * maxBatchSize * TRTInfer::dataTypeSize(config_->configDataType_);
return config_->workspaceSize_;
}
std::shared_ptr<LayerConfig> DCNv2::config(const std::string& layerName) {
auto cfg = TRTPlugin::config(layerName);
cfg->supportDataType_ = {nvinfer1::DataType::kFLOAT};
//cfg->supportDataType_ = {nvinfer1::DataType::kHALF, nvinfer1::DataType::kFLOAT};
//cfg->supportDataType_ = {nvinfer1::DataType::kHALF};
return cfg;
}
RegisterPlugin(DCNv2);