-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcrawl_acknowledgements.py
executable file
·280 lines (252 loc) · 11.2 KB
/
crawl_acknowledgements.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#!/usr/bin/env python3
# Author: Michael E. Rose <[email protected]>
"""Crawl article's html files for acknowledgments and
output one file per journal-year.
"""
import pandas as pd
import requests
from bs4 import BeautifulSoup
SOURCE_FILE = "./DOIs.csv"
TARGET_FOLDER = "./crawler_output/"
# Years of journals for which we can crawl information
KEEP = {"JF": range(2004, 2011+1), "JMCB": range(2007, 2011+1),
"RFS": range(2004, 2011+1),"JFI": range(1997, 2011+1),
"JFE": range(1997, 2011+1), "JBF": range(1997, 2011+1)}
# Strings indicating meta articles
_metakeywords = ["MISCELLANEA", "MINUTES OF THE ANNUAL", "REPORT OF THE EDITOR",
"REPORT OF THE EXECUTIVE SECRETARY AND TREASURER", "FOREWORD",
"A NOTE FROM THE EDITOR", "DISCUSSION OF", "EDITORS’ NOTE",
"EDITORS' NOTE", "EDITORS’ INTRODUCTION",
"EDITORS' INTRODUCTION", "EDITOR'S INTRODUCTION",
"CORRIGENDUM", "ERRATUM", "FRONT MATTER", "BACK MATTER"]
def abbreviate(journal):
"""Abbreviate journal name."""
j = journal.replace(" OF ", " ").replace(" AND ", " ").replace("& ", "")
return "".join(n[0] for n in j.split())
def append_thanks_to_output(thanklist, tag):
"""Append cleaned acknowledgment section."""
thanks = clean_string(tag)
if not thanks == "":
return thanklist.append("THANKS: {}\n".format(thanks))
def contains_carriage_return(text):
"""Check if carriage return is present."""
return "↵" in clean_string(text)
def is_keyword(text):
"""Check whether text is likely to be a keyword."""
return len(text.strip()) < 4 and text.isalpha()
def is_meta_article(title):
"""Check if a given title does indicate a non-research article."""
return any(keyword in title for keyword in _metakeywords)
def clean_string(dirt):
"""Remove clutter from a string."""
dirt = "".join(i if ord(i) < 128 else ' ' for i in dirt)
try:
dirt = dirt.encode("utf8").upper()
except UnicodeDecodeError:
dirt = dirt.upper()
if dirt.endswith('AND'):
dirt = dirt.split(' AND', 1)[0]
if dirt.endswith('CORRESPONDING AUTHOR.'):
dirt = dirt.split(' CORRESPONDING AUTHOR.', 1)[0]
clean = (dirt.strip().strip('*').strip('☆').strip(',').strip().strip('*')
.lstrip('1234567890').rstrip('1234567890-,'))
clean = " ".join(clean.split())
return (clean.replace("ACKNOWLEDGMENTS", "")
.replace("ACKNOWLEDGEMENTS", "")
.replace("PREVIOUS SECTIONNEXT SECTION", "")
.strip().rstrip(',')))
def get_clean_affs(tags, lookup):
"""Return list of standarized affiliations."""
repl = [clean_string(tag) for tag in tags]
subs = sorted(list(set([item for sl in lookup for item in sl])))
lookup_dict = dict(zip(subs, repl))
for sub in lookup_dict: # replace
aff_list = [[aff.replace(sub, lookup_dict[sub]) for aff in l]
for l in aff_list]
def process(df):
"""Parse all DOIs of DataFrame."""
dois = df["DOI"]
journal = df["Journal"]
year = df["Year"]
output = []
for doi in dois:
html = requests.get("http://dx.doi.org/" + doi)
soup = BeautifulSoup(html, 'lxml')
output.append(parse(soup))
return output
def parse(soup, journal):
"""Parse a single file depening on the journal."""
auth_list, aff_list = [], []
if journal == "JFI": # check if article is a Regular Article
publication_type = soup.find('div', {'class': 'publicationType'})
if publication_type is not None and publication_type.text != "Regular Article":
return None
# TITLE
try:
title_tag = soup.find()
if journal == "RFS":
title = soup.find("h1", {"id": "article-title-1"}).text
elif journal in ("JFI", "JFE", "JBF"):
title = soup.find("li", {"class": 'originalArticleName'}).text
else:
title = soup.find("span", {"class": "mainTitle"}).text
except AttributeError:
print("No title found")
pass
title = title.replace("\n", "").upper().encode('utf-8')
title = " ".join(title.split())
if is_meta_article(title):
return None
output.append("TITLE: {}\n".format(title))
# AUTH
if journal == "RFS":
for author in soup.find_all('a', {"class": "name-search"}):
auth_list.append("AUTH: {}\n".format(clean_string(author.text)))
if journal in ("JFI", "JFE", "JBF"): # two possibilities
subscripts_list = []
for author in soup.find_all('a', {"class": "authorName svAuthor"}):
auth_list.append("AUTH: {}\n".format(clean_string(author.text)))
auth_entries = soup.find_all(
'a', {"class": "authorName S_C_authorName svAuthor"})
for author in auth_entries:
auth_list.append("AUTH: {}\n".format(clean_string(author.text)))
nextSubscript = author
while True: # Get affiliation subscripts
nextSubscript = nextSubscript.nextSibling
try:
if nextSubscript.text.isalpha():
subscripts_list.append(nextSubscript.text)
except AttributeError:
break
if subscripts_list != []:
aff_list.append(subscripts_list)
subscripts_list = []
else:
for authortag in soup.find_all('ol', {"id": "authors"}):
for author in authortag.findChildren('li'):
auth_list.append("AUTH: {}\n".format(clean_string(author.text)))
# AFF
if journal == "RFS":
for affiliation in soup.find_all('li', {"class": "aff"}):
aff_list.append("AFF: {}\n".format(clean_string(affiliation.text)))
elif journal in ("JFI", "JFE", "JBF"): # create dictionary for subscripts
afftags = soup.find_all(
lambda e: getattr(e, 'name', None) == 'span' and
e.attrs.get('id') == '')
try:
if afftags[0].text == "Regular Article":
# remove possible first item
del afftags[0]
except IndexError: # sometimes there are no affiliations
aff_list.append(["check online"])
if aff_list == []: # one affiliation (for possibly many authors)
aff_list = ["AFF: {}\n".format(clean_string(afftags[0].text))]
else: # multiple affiliations
affs = get_clean_affs(afftag.text, aff_list)
aff_list = ["AFF: {}\n".format("; ".join(list)) for list in affs]
else:
for afftag in soup.find_all('ol', {"id": "authorsAffiliations"}):
for aff in afftag.findChildren('li'):
aff_list.append("AFF: {}\n".format(clean_string(aff.text)))
# Sort AUTH and AFF alternatively
if aff_list in ([], [[]]):
output.append(''.join(map(str, auth_list)))
else: # make sure there are enough affiliations
if len(aff_list) < len(auth_list):
if len(set(aff_list)) == 1: # one affiliation for all authors
aff = [aff_list[0]]
aff_list.extend(aff*(len(auth_list) - len(aff_list)))
else:
aff_list = ["AFF: check online\n"]*len(auth_list)
auth_aff_list = zip(auth_list, aff_list)
auth_aff_list = [item for sublist in auth_aff_list for item in sublist]
output.append(''.join(map(str, auth_aff_list)))
# THANKS
if journal == "JMCB": # one possibility
for thanktag in soup.find_all("ol", {"id": "footnotes"}):
append_thanks_to_output(output, thanktag.text)
elif journal == "RFS": # five possibilities
# from http://codereview.stackexchange.com/a/87028/59669
thanktag_queries = [
("div", {"class": "section ack"}, 0),
("li", {"class": "fn-con"}, 0),
("li", {"class": "fn fn-group-arthw-misc"}, 0),
("li", {"id": "fn-1"}, 0)
]
thanktag = None
for i in xrange(len(thanktag_queries)):
thanktag_query = thanktag_queries[i]
soup_result = soup.find_all(thanktag_query[0], thanktag_query[1])
if len(soup_result) > thanktag_query[2]:
thanktag = soup_result[0]
if i == len(thanktag_queries):
if not contains_carriage_return(unicode(thanktag.text)):
thanktag = soup_result[-2]
break
if not (thanktag is None and contains_carriage_return(thanktag.text)):
thanks = clean_string(thanktag.text)
append_thanks_to_output(output, thanks)
elif journal == "JF": # two possibilities
for thanktag in soup.find_all('p', {"id": "correspondence"}):
thanks = thanktag
if 'thanktag' not in globals():
for thanktag in soup.find_all('ul', {"id": "footnotes"}):
thanks = thanktag
else:
append_thanks_to_output(output, thanks.text)
elif journal in ("JFI", "JFE", "JBF"): # three possibilities
try:
thanktag = soup.find('div', {'class': 'articleText_indent'})
append_thanks_to_output(output, thanktag.text)
except AttributeError:
for thanktag in soup.find_all('dl', {'id': 'item1'}):
append_thanks_to_output(output, thanktag.text)
if thanktag is None:
thanktag = soup.find('div', {'class': 'artFooterContent'}).text
if len(thanktag) < 1000:
append_thanks_to_output(output, thanktag)
# JEL
jel_list = []
if journal == "RFS":
for jeltag in soup.find_all('li', {"class": "kwd"}):
jel_list.append(jeltag.text)
if journal in ("JF", "JMCB"):
for jeltag in soup.find_all('meta', {"name": "citation_keywords"}):
if not is_keyword(jeltag['content']):
jel_list.append(jeltag['content'])
else: # two possibilities
for jeltag in soup.find_all('li', {'class': 'svKeywords'}):
jeltag = jeltag.text.strip('; ')
if not is_keyword(jeltag):
jel_list.append(jeltag)
if jel_list == []:
abstract = soup.find('div', {"class": 'abstract svAbstract '})
if abstract is not None:
jel_codes = abstract.text.split(':')[-1]
if len(jel_codes) < 50:
jel_list = jel_codes.strip().rstrip(".").split(', ')
if jel_list != []:
output.append("JEL: {}\n".format('; '.join(jel_list)))
# End of entry
output.append("\n")
return output
def read_doilist():
"""Return processed DOI list file."""
df = pd.read_csv(SOURCE_FILE, usecols=["Journal", "Year", "DOI"])
journals = set(df["Journal"])
mapping = {j: abbreviate(j) for j in journals}
df["Journal"] = df["Journal"].replace(mapping)
return df.sort_values("Year")
def main():
df = read_doilist()
combs = []
for j in KEEP:
combs.extend([(j, y) for y in KEEP[j]])
for journal, year in combs:
subset = df[(df["Journal"] == journal) & (df["Year"] == year)]
output = process(subset.iloc[1:2])
ouf = "TARGET_FILE{}-{}.dat".format(journal, year)
with open(ouf, 'a') as ouf:
ouf.write(str(''.join(map(str, output))))
if __name__ == '__main__':
main()