-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
215 lines (177 loc) · 11.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import torch
import torch.nn.functional as F
import numpy as np
import os
import argparse
from tqdm import tqdm
import models_utils
import load
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
torch.manual_seed(999)
if use_cuda:
torch.cuda.manual_seed_all(999)
np.random.seed(999)
def train(params):
def2id, all_def_embs = load.get_def2id_defEmbs(params.def_dir)
voc = load.get_voc(params.voc_path, params.w2v_path, params.words_path, params.word_dim)
train_loader = load.get_loader(params, params.train_pair, params.train_ctxVec, params.train_defVec, def2id, voc, params.batch_size, 'train')
val_loader = load.get_loader(params, params.val_pair, params.val_ctxVec, params.val_defVec, def2id, voc, 4096, 'val')
del def2id
optimizer, scheduler, mapping = models_utils.build_model(params, torch.tensor(voc.embedding))
# Start Training
best_score = 0 # max precision = 100
start_e = params.load_epoch + 1 if params.load_epoch else 1
for epoch in tqdm(range(start_e, params.max_epoch+1)):
for i, (_, wordID, x, y) in enumerate(train_loader):
optimizer.zero_grad()
x = x.to(device) # [bs, num_layers, 768]
y = y.to(device) # [bs, 512]
wordID = wordID.to(device)
y_ = mapping(x, wordID)
loss = F.mse_loss(y_, y, reduction='sum') / params.batch_size
loss.backward()
optimizer.step()
# Run evaluation to decide whether to decay lr / update best model
result = models_utils.get_mapping_accuracy(mapping, val_loader, all_def_embs)
scheduler.step(result['eval_loss'])
score = result[5] # use P@5 as criterion
if score > best_score:
best_res = {
'epoch': epoch,
'batch_size': params.batch_size,
'lr': params.lr,
'val_loss': result['eval_loss'],
'cos_dist': result['cos_dist'],
'P@1': result[1].item(),
'P@5': result[5].item(),
'P@10': result[10].item(),
'mapping': mapping.state_dict(),
'optimizer': optimizer.state_dict()
}
torch.save(best_res, os.path.join(params.ckpt_dir, 'best_model_out_of_{}.tar'.format(params.max_epoch)))
best_score = score
print("[{:2d}] Save Best P@K [max 100%] :".format(epoch))
print("[Validation Set] :")
print(result)
print("========================================================")
if (epoch % params.print_epoch == 0) or (epoch % params.save_epoch == 0):
print('[{:2d}] loss: {:.2f}'.format(epoch, loss))
print("P@K [max 100%] :")
print("[Validation Set] :")
print(result)
print("[Training Set (average over 3 batches only)] :")
tr_res = models_utils.get_mapping_accuracy(mapping, train_loader, all_def_embs, eval_few=True)
print(tr_res)
if epoch % params.save_epoch == 0:
save_res = {
'epoch': epoch,
'batch_size': params.batch_size,
'lr': params.lr,
'val_loss': result['eval_loss'],
'P@1': result[1].item(),
'P@5': result[5].item(),
'P@10': result[10].item(),
'mapping': mapping.state_dict(),
'optimizer': optimizer.state_dict()
}
torch.save(save_res, os.path.join(params.ckpt_dir, 'model_{}.tar'.format(epoch)))
print("========================================================")
print("########################################################")
print("Best Result Overall:")
print(' epoch:', best_res['epoch'])
print(' val_loss:', best_res['val_loss'])
print(' cos_dist:', best_res['cos_dist'])
print(' P@1:', best_res['P@1'])
print(' P@5:', best_res['P@5'])
print(' P@10:', best_res['P@10'])
print("########################################################")
if params.model_type != 'baseline':
print("Learned weights for different BERT layer:")
print(F.softmax(mapping.weights, dim=0))
def test(params):
def2id, all_def_embs = load.get_def2id_defEmbs(params.def_dir)
voc = load.get_voc(params.voc_path, params.w2v_path, params.words_path, params.word_dim)
test_loader = load.get_loader(params, params.test_pair, params.test_ctxVec, params.test_defVec, def2id, voc, 4096, 'test')
_, _, mapping = models_utils.build_model(params, torch.tensor(voc.embedding))
result = models_utils.get_mapping_accuracy(mapping, test_loader, all_def_embs)
print("########################################################")
print("Test {}:".format(params.test_pair))
print(result)
print("########################################################")
if params.visualize:
test_name = os.path.basename(params.test_pair).split('.')[0]
out_log_path = os.path.join(params.log_dir, '{}_{}_layer{}_bs{}.txt'.format(test_name, params.model_type, params.n_layers, params.batch_size))
print("out_log_path:", out_log_path)
vis_loader = load.get_loader(params, params.test_pair, params.test_ctxVec, params.test_defVec, def2id, voc, 1, 'test', visualize=True)
id2def = {v: k for k, v in def2id.items()}
models_utils.visualize_knn(mapping, vis_loader, all_def_embs, id2def, result, out_log_path, params.dump, params.model_type)
def test_rev(params):
voc = load.get_voc(params.voc_path, params.w2v_path, params.words_path, params.word_dim)
# test reverse mapping on the train set
test_loader = load.get_loader(params, params.train_pair, params.train_ctxVec, params.train_defVec, None, voc, 1, 'train')
_, _, mapping = models_utils.build_model(params, torch.tensor(voc.embedding))
models_utils.get_reverse_recall(voc.n_words, mapping, test_loader)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--def_dir', type=str, default="data", help='the directory for def2id and def_embeddings')
parser.add_argument('--train_pair', type=str, default="data/train.txt", help='.npy input file for training')
parser.add_argument('--val_pair', type=str, default="data/val_filter.txt", help='.npy input file for validation')
parser.add_argument('--test_pair', type=str, default="data/test_easy.txt", help='.npy input file for inference')
parser.add_argument('--train_ctxVec', type=str, default="features/train.npy", help='.npy context-dependent embedding for training')
parser.add_argument('--val_ctxVec', type=str, default="features/val_filter.npy", help='.npy context-dependent embedding for validation')
parser.add_argument('--test_ctxVec', type=str, default="features/test_easy.npy", help='.npy context-dependent embedding for inference')
parser.add_argument('--train_defVec', type=str, default="data/def_train.npy", help='.npy definition embedding for training')
parser.add_argument('--val_defVec', type=str, default="data/def_val_filter.npy", help='.npy definition embedding for validation')
parser.add_argument('--test_defVec', type=str, default="data/def_test_easy.npy", help='.npy definition embedding for inference')
parser.add_argument('--syn_path', type=str, default="data/train_syn.txt", help='path to synonyms')
parser.add_argument('--w2v_path', type=str, default="/media/tera/DATA/myData/W2V/wiki-news-300d-1M.vec", help='path to the pretrained word embedding')
parser.add_argument('--voc_path', type=str, default="data/voc.tar", help='path to the pretrained target word embedding')
parser.add_argument('--words_path', type=str, default="parsed/train_Voc.txt", help='path to the file containing all target words')
parser.add_argument('--unseen_path', type=str, default="data/unseen_words", help='path to the file containing unseen target words to be held out')
parser.add_argument('--word_dim', type=int, default=300, help='dimension of the target word embedding')
parser.add_argument('--emb1_dim', type=int, default=768, help='dimension of the contextual keyword vector')
parser.add_argument('--emb2_dim', type=int, default=512, help='dimension of the definition vector')
parser.add_argument('--batch_size', type=int, default=256, help='batch size for training')
parser.add_argument('--model_type', type=str, default='BERT_base', help='[BERT_base, BERT_large, ELMo, baseline]')
parser.add_argument('--n_feats', type=int, default=4, help='last * layers of contextual features to be used [BERT: 4, ELMo:3]')
# parser.add_argument('--n_BPE', type=int, default=3, help='maximum word pieces to be used')
parser.add_argument('--n_layers', type=int, default=7, help='number of non-linear layers')
parser.add_argument('--patience', type=int, default=5, help='number of epochs with no improvement after which lr will be reduced')
parser.add_argument('--max_epoch', type=int, default=100, help='max epoch to train the model')
parser.add_argument('--save_epoch', type=int, default=50, help='save the model every * epochs')
parser.add_argument('--print_epoch', type=int, default=10, help='print the result every * epochs')
parser.add_argument('--lr', type=float, default=5*1e-4, help='learning rate')
parser.add_argument('--ckpt_dir', type=str, default='ckpt', help='directory to save the checkpoint')
parser.add_argument('--log_dir', type=str, default='logs', help='directory to save the logs')
parser.add_argument('--load_epoch', type=int, help='load the model pretrained for * epoches, load the best model if not given')
parser.add_argument('--best_model_name', type=str, default='best_model_out_of_100.tar', help='load only if load_epoch is not given')
parser.add_argument('--norm', action='store_true', default=False, help='normalize embeddings to unit vector before training')
parser.add_argument('--load', action='store_true', default=False, help='load pretrained')
parser.add_argument('--test', action='store_true', default=False, help='testing mode')
parser.add_argument('--reverse', action='store_true', default=False, help='reverse mapping')
parser.add_argument('--zero', action='store_true', default=False, help='zero-shot, input is (unseen word, unseen context)')
parser.add_argument('--freeze', action='store_true', default=False, help='freeze the word embedding as pretrained word embedding')
parser.add_argument('--visualize', action='store_true', default=False, help='visualize the mapping result when inference')
parser.add_argument('--dump', action='store_true', default=False, help='dump the mapped embeddings')
args = parser.parse_args()
if not os.path.exists(args.ckpt_dir):
assert not args.test, "directory args.ckpt_dir for pretrained model doesn't exist !"
os.makedirs(args.ckpt_dir)
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir)
if args.load and not args.load_epoch:
assert args.best_model_name, "No pre-trained model is given !"
assert args.model_type in ['BERT_base', 'BERT_large', 'ELMo', 'baseline'], "model_type not found !"
print("freeze:", args.freeze, "zero-shot:", args.zero)
if args.test:
print("[Test Mode]")
if args.reverse:
test_rev(args)
else:
test(args)
else:
print("[Train Mode]")
train(args)
if __name__ == "__main__":
main()